The ability to image the concentration of transition metals in living cells in real time is important for further understanding of transition metal homeostasis and its involvement in diseases. The goal of this study was to develop a genetically encoded FRET-based sensor for copper(I) based on the copper-induced dimerization of two copper binding domains involved in human copper homeostasis, Atox1 and the fourth domain of ATP7B (WD4). A sensor has been constructed by linking these copper binding domains to donor and acceptor fluorescent protein domains. Energy transfer is observed in the presence of Cu(I), but the Cu(I)-bridged complex is easily disrupted by low molecular weight thiols such as DTT and glutathione. To our surprise, energy transfer is also observed in the presence of very low concentrations of Zn(II) (10(-)(10) M), even in the presence of DTT. Zn(II) is able to form a stable complex by binding to the cysteines present in the conserved MXCXXC motif of the two copper binding domains. Co(II), Cd(II), and Pb(II) also induce an increase in FRET, but other, physiologically relevant metals are not able to mediate an interaction. The Zn(II) binding properties have been tuned by mutation of the copper-binding motif to the zinc-binding consensus sequence MDCXXC found in the zinc transporter ZntA. The present system allows the molecular mechanism of copper and zinc homeostasis to be studied under carefully controlled conditions in solution. It also provides an attractive platform for the further development of genetically encoded FRET-based sensors for Zn(II) and other transition metal ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0610030 | DOI Listing |
ACS Cent Sci
January 2025
Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056, USA.
Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
Ctr1 is a membrane-spanning homotrimer that facilitates copper uptake in eukaryotic cells with high affinity. While structural details of the transmembrane domain of human Ctr1 have been elucidated using X-ray crystallography and cryo-EM, the transfer mechanisms of copper and the conformational changes that control the gating mechanism remain poorly understood. The role of the extracellular N-terminal domains is particularly unclear due to the absence of a high-resolution structure of the full-length hCtr1 protein and limited biochemical and biophysical characterization of the transporter in solution and in cell.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science and Technology, Shandong Agricultural University, Tai'an 271017, China.
The objective of this study was to explore the effects of dietary iron (Fe) levels on the production performance, nutrient digestibility, blood biochemistry, and meat and fur quality of growing Rex rabbits. Two hundred 3-month-old Rex rabbits were randomly allocated to five groups, each with forty replicates. Rabbits were fed a basal diet supplemented with varying levels of Fe (0, 20, 40, 80, and 160 mg/kg) in the form of ferrous sulfate monohydrate.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!