The neuronal impulse reactions of the motor cortex neurons (field 4) which are involved in the reflex realization were studied on the awakening cats trained to perform conditioned movement after the influence of two stimuli (the preliminary and the conditional). Slow cortex potential in vertex was registered simultaneously. It was established that before the response to the triggering signal (interstimuli period) high amplitude negative shift in the slow cortex potential is present. At the same time we registered inhibition of neuron activity which led to excitative reactions represented as potent impulses. The obtained results allow us to suggest a relationship between the development of negativeness and inhibition of motor cortex neurons during preparation to the movement.

Download full-text PDF

Source

Publication Analysis

Top Keywords

motor cortex
12
cortex neurons
12
reactions motor
8
slow cortex
8
cortex potential
8
cortex
5
[inhibitory reactions
4
neurons triggering
4
triggering conditioned
4
conditioned reflex
4

Similar Publications

Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.

View Article and Find Full Text PDF

Spatio-temporal transformers for decoding neural movement control.

J Neural Eng

January 2025

Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185, ITALY.

Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity in vivo remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results. Approach: To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity.

View Article and Find Full Text PDF

Nowadays, intracerebral hemorrhage (ICH) is the main cause of death and disability, and motor impairment is a common sequel to ICH. Electroacupuncture (EA) has been widely used for functional recovery after ICH. However, its role and associated regulatory mechanisms in rehabilitation after ICH remain poorly understood.

View Article and Find Full Text PDF

The somato-cognitive action network (SCAN) consists of three nodes interspersed within Penfield's motor effector regions. The configuration of the somato-cognitive action network nodes resembles the one of the 'plis de passage' of the central sulcus: small gyri bridging the precentral and postcentral gyri. Thus, we hypothesize that these may provide a structural substrate of the somato-cognitive action network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!