Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559796 | PMC |
http://dx.doi.org/10.1631/jzus.2006.B0702 | DOI Listing |
J Environ Manage
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia. Electronic address:
Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations.
View Article and Find Full Text PDFUnited European Gastroenterol J
December 2024
The Sheba Talpiot Medical Leadership Program, Sheba Medical Center, Ramat-Gan, Israel.
Background: Gastrointestinal perforations have been reported in a small number of rheumatoid arthritis (RA) patients treated with Janus kinase (JAK) inhibitors in clinical trials. However, large-scale postmarketing data repositories are needed to further investigate this potentially rare but serious adverse event.
Methods: A retrospective, pharmacovigilance study of the FDA adverse event reporting system (July 2014 to September 2023) assessing the reporting of gastrointestinal perforations following JAK inhibitors compared to biological disease-modifying antirheumatic drugs (bDMARDs) in RA patients.
Bioelectrochemistry
December 2024
School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353 Shandong, PR China; State Key Laboratory of Bio-based Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, PR China. Electronic address:
Sediment microbial fuel cell (SMFC) is a device for biological denitrification, in which electrons produced by sediment microorganisms can be transferred to the upper layer of the water column lacking electron donors. However, the low efficiency of denitrifying bacteria in acquiring electrons and enriching at the cathode greatly hinders the application of SMFC for nitrogen removal. In this study, we report a novel method of constructing a high-performance biocathode by modifying electrodes with zero-valent iron to enhance the enrichment and electron transfer of electroactive bacteria.
View Article and Find Full Text PDFComput Biol Med
February 2025
Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel. Electronic address:
Background: The identification and drug targeting of cancer causing (driver) genetic alterations has seen immense improvement in recent years, with many new targeted therapies developed. However, identifying, prioritizing, and treating genetic alterations is insufficient for most cancer patients. Current clinical practices rely mainly on DNA level mutational analyses, which in many cases fail to identify treatable driver events.
View Article and Find Full Text PDFGels
November 2024
Chemical Engineering Department and The Radical Research Center, Ariel University, Ariel 4070000, Israel.
The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol-gel method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!