Microbial community structure in three deep-sea carbonate crusts.

Microb Ecol

Department of Microbiology, Center of Ecological and Evolutionary Studies, University of Groningen, P.O. Box 14, 9750 AA, Haren, The Netherlands.

Published: October 2006

AI Article Synopsis

Article Abstract

Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eastern Mediterranean were characterized by sequencing 16S ribosomal RNA (rRNA) genes amplified from DNA directly retrieved from the samples. In combination with the mineralogical composition of the crusts and lipid analyses, sequence data were used to assess the possible role of prokaryotes in crust formation. Collectively, the obtained data showed the presence of highly diverse communities, which were distinct in each of the carbonate crusts studied. Bacterial 16S rRNA gene sequences were found in all crusts and the majority was classified as alpha-, gamma-, and delta- Proteobacteria. Interestingly, sequences of Proteobacteria related to Halomonas and Halovibrio sp., which can play an active role in carbonate mineral formation, were present in all crusts. Archaeal 16S rRNA gene sequences were retrieved from two of the crusts studied. Several of those were closely related to archaeal sequences of organisms that have previously been linked to the anaerobic oxidation of methane (AOM). However, the majority of archaeal sequences were not related to sequences of organisms known to be involved in AOM. In combination with the strongly negative delta 13C values of archaeal lipids, these results open the possibility that organisms with a role in AOM may be more diverse within the Archaea than previously suggested. Different communities found in the crusts could carry out similar processes that might play a role in carbonate crust formation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-006-9099-8DOI Listing

Publication Analysis

Top Keywords

carbonate crusts
12
carbonate crust
12
crust formation
12
crusts
8
crusts studied
8
16s rrna
8
rrna gene
8
gene sequences
8
role carbonate
8
archaeal sequences
8

Similar Publications

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.

View Article and Find Full Text PDF

For large, open-air lithic cultural heritage, colonization is an inevitable process. This study examines the dual impact of colonization on the Leshan Giant Buddha's sandstone monuments, focusing on both biodeterioration and protection. Over three years, we conducted field surveys and monitored biocrusts (bryophytes, lichens, and biofilms) on these monuments, observing significant biodeterioration primarily due to mechanical exfoliation and acid corrosion.

View Article and Find Full Text PDF

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!