Prolonged inhibition of Na,K-ATPase enzymatic activity by exposure of a variety of mammalian cells to low external K+ yields a subsequent adaptive up-regulation of Na,K-ATPase expression. The aim of this study was to examine the intracellular signal transduction system that is responsible for mediating increased Na,K-ATPase subunit gene expression in primary cultures of neonatal rat cardiac myocytes. In this work, we show long-term inhibition of Na,K-ATPase function with 0.6 mM K+ resulted in hypertrophy of cardiac myocytes and augmentation of Na,K-ATPase alpha1 and beta1 subunit gene expression. Transient transfection experiments in neonatal rat cardiac myocytes demonstrated that low K+ induction of alpha1 and beta1 gene transcription was dependent on intracellular Ca2+ and activation of calcineurin. Based on effects of pharmacological inhibitors, protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2) and histone deacetylase were found to be unique downstream components in the low K+ signal transduction pathway leading to increased alpha1 subunit promoter activity. Similarly, low K+-induced beta1 subunit gene transcription was dependent on activation of protein kinase C (PKC), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These findings indicate that persistent inhibition of Na,K-ATPase activity with low external K+ activates overlapping and Na,K-ATPase subunit gene-specific signaling pathways in cardiac myocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-006-9247-yDOI Listing

Publication Analysis

Top Keywords

subunit gene
16
cardiac myocytes
16
alpha1 beta1
12
beta1 subunit
12
gene transcription
12
inhibition nak-atpase
12
protein kinase
12
signaling pathways
8
nak-atpase
8
nak-atpase alpha1
8

Similar Publications

A new quantitative reverse transcription PCR assay to improve the routine diagnosis of paracoccidioidomycosis.

Med Mycol

January 2025

Mycology Department, National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology Research Group, Institut Pasteur, Université Paris Cité, Paris, France.

Paracoccidioides are dimorphic fungal pathogens and the etiological agents of paracoccidioidomycosis (PCM). This severe systemic mycosis is restricted to Latin America, where it has been historically endemic. Currently, PCM presents the fewest diagnostic tools available when compared to other endemic mycoses.

View Article and Find Full Text PDF

Multigene, genus-wide phylogenetic studies have uncovered the limited taxonomic resolution power of commonly used gene markers, particularly of rRNA genes, to discriminate closely related species of the nematode genus Heterorhabditis. In addition, conflicting tree topologies are often obtained using the different gene markers, which limits our understanding of the phylo- and co-phylogenetic relationships and biogeography of the entomopathogenic nematode genus Heterorhabditis. Here we carried out phylogenomic reconstructions using whole nuclear and mitochondrial genomes, and whole ribosomal operon sequences, as well as multiple phylogenetic reconstructions using various single nuclear and mitochondrial genes.

View Article and Find Full Text PDF

Introduction: This is a report of a child with congenital hyperinsulinism associated with a loss-of-function variant in KCNE1. KCNE1 encodes a human potassium channel accessory (beta) subunit that modulates potassium channel Kv7.1 (encoded by KCNQ1).

View Article and Find Full Text PDF

Background: The Ets-1 transcription factor plays a primordial role in regulating the expression of numerous genes implicated in cancer progression. In a previous study, we revealed that poly(ADP-ribose) polymerase-1 (PARP-1) inhibition by PJ-34 results in Ets-1 level increase in cells, which is related with cell death of Ets-1-expressing cancer cells.

Aims: The mechanism of the antitumor effect of PARP-1 inhibition was investigated in the Ets-1-expressing MDA-MB-231 breast cancer cells.

View Article and Find Full Text PDF

Background: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is a prevalent type of autoimmune encephalitis caused by antibodies targeting the NMDAR's GluN1 subunit. While significant progress has been made in elucidating the pathophysiology of autoimmune diseases, the immunological mechanisms underlying anti-NMDARE remain elusive. This study aimed to characterize immune cell interactions and dysregulation in anti-NMDARE by leveraging single-cell multi-omics sequencing technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!