2-DE proteomic profiling of neuronal stem cells.

Neurodegener Dis

Neurobiological Laboratory, Department of Neurology, Medical Faculty, Rostock, Germany.

Published: October 2006

Proteomics has become a powerful tool in neuroscience studies. Although numerous human neural stem cells are available for research purposes since many years, there exists only limited information on proteomic data from stable neural stem cell lines. Profiling and functional proteome studies of neuronal stem cells will help to describe the protein inventory as well as protein activity and interactions, subcellular localization and posttranslational modifications. The proteomic analysis of neuronal differentiation processes will elucidate the complex events leading to the generation of different phenotypes via distinctive developmental programs that control self-renewal, differentiation, and plasticity. Using the ReNcell VM197 model, a cell line derived from human fetal ventral mesencephalon stem cells, we studied the protein inventory of the stem cells by 2-DE gel electrophoresis and mass spectrometric protein identification and constructed a 2-DE protein map consisting of more than 400 identified protein spots. This proteome reference database constitutes the basis for further investigations of differential protein expression during differentiation. A profiling of the neuronal differentiation-associated changes displayed the large rearrangement of the proteome during this process, and the proteomic techniques proved to be a valuable tool for the elucidation of neuronal differentiation process and for target protein screening.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000092102DOI Listing

Publication Analysis

Top Keywords

stem cells
20
profiling neuronal
8
neuronal stem
8
neural stem
8
protein
8
protein inventory
8
neuronal differentiation
8
stem
6
neuronal
5
cells
5

Similar Publications

The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs).

View Article and Find Full Text PDF

Cellular senescence is understood to be a biological process that is defined as irreversible growth arrest and was originally recognized as a tumor-suppressive mechanism that prevents further propagation of damaged cells. More recently, cellular senescence has been shown to have a dual role in prevention and tumor promotion. Senescent cells carry a senescence-associated secretory phenotype (SASP), which is altered by secretory factors including pro-inflammatory cytokines, chemokines, and other proteases, leading to the alteration of the tissue microenvironment.

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

Remodeling the Proinflammatory Microenvironment in Osteoarthritis through Interleukin-1 Beta Tailored Exosome Cargo for Inflammatory Regulation and Cartilage Regeneration.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.

Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.

View Article and Find Full Text PDF

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!