Alzheimer's disease and Parkinson's disease are the most common neurodegenerative conditions associated with the ageing process. The pathology of these and other neurodegenerative disorders, including polyglutamine diseases, is characterised by the presence of inclusion bodies in brain tissue of affected patients. In general, these inclusion bodies consist of insoluble, unfolded proteins that are commonly tagged with the small protein, ubiquitin. Covalent tagging of proteins with chains of ubiquitin generally targets them for degradation. Indeed, the ubiquitin/proteasome system (UPS) is the major route through which intracellular proteolysis is regulated. This strongly implicates the UPS in these disease-associated inclusions, either due to malfunction (of specific UPS components) or overload of the system (due to aggregation of unfolded/mutant proteins), resulting in subsequent cellular toxicity. Protein targeting for degradation is a highly regulated process. It relies on transfer of ubiquitin molecules to the target protein via an enzyme cascade and specific recognition of a substrate protein by ubiquitin-protein ligases (E3s). Recent advances in our knowledge gained from the Human Genome Mapping Project have revealed the presence of potentially hundreds of E3s within the human genome. The discovery that parkin, mutations in which are found in at least 50% of patients with autosomal recessive juvenile parkinsonism, is an E3 further highlights the importance of the UPS in neurological disease. To date, parkin is the only E3 confirmed to have a direct causal role in neurodegenerative disorders. However, a number of other (putative) E3s have now been identified that may cause disease directly or interact with neurological disease-associated proteins. Many of these are either lost or mutated in a given disease or fail to process disease-associated mutant proteins correctly. In this review, we will discuss the role(s) of E3s in neurodegenerative disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000080048 | DOI Listing |
Mol Neurobiol
January 2025
Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
This study investigates the role of flavonoid Icaritin (ICT) in estrogen-deficient ovariectomized (OVX) female mice by activating the Estrogen receptor (ER)/ Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, potentially delaying Parkinson's disease (PD) progression post-castration. Seventy-five 8-week-old C57BL/6J female mice underwent ovariectomy, followed by MPTP (20 mg/kg) injection for 7 days. ICT (20 mg/kg) was administered for 14 days, and motor function was assessed using various behavioral tests.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neurosurgery, General Hospital of Northern Theater Command, Postgraduate Training Base of General Hospital of Northern Theater Command of Jinzhou Medical University, Shenyang, Liaoning, China.
Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India. Electronic address:
The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!