Efflux of dopamine through the dopamine transporter (DAT) is critical for the psychostimulatory properties of amphetamines, but the underlying mechanism is unclear. Here we show that Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) plays a key role in this efflux. CaMKIIalpha bound to the distal C terminus of DAT and colocalized with DAT in dopaminergic neurons. CaMKIIalpha stimulated dopamine efflux via DAT in response to amphetamine in heterologous cells and in dopaminergic neurons. CaMKIIalpha phosphorylated serines in the distal N terminus of DAT in vitro, and mutation of these serines eliminated the stimulatory effects of CaMKIIalpha. A mutation of the DAT C terminus impairing CaMKIIalpha binding also impaired amphetamine-induced dopamine efflux. An in vivo role for CaMKII was supported by chronoamperometry measurements showing reduced amphetamine-induced dopamine efflux in response to the CaMKII inhibitor KN93. Our data suggest that CaMKIIalpha binding to the DAT C terminus facilitates phosphorylation of the DAT N terminus and mediates amphetamine-induced dopamine efflux.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2006.06.028DOI Listing

Publication Analysis

Top Keywords

dopamine efflux
16
dat terminus
12
amphetamine-induced dopamine
12
dopamine transporter
8
dat
8
distal terminus
8
terminus dat
8
dopaminergic neurons
8
neurons camkiialpha
8
camkiialpha binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!