Folding of the repeat domain of tau upon binding to lipid surfaces.

J Mol Biol

Department of Biochemistry and Program in Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA.

Published: September 2006

The microtubule-associated protein tau is impacted in neurodegeneration and dementia through its deposition in the form of paired helical filaments in Alzheimer's disease neurofibrillary tangles and through mutations linking it to the autosomal dominant disorder frontotemporal dementia with Parkinsonism. When isolated in solution tau is intrinsically unstructured and does not fold, while the conformation of the protein in the microtubule-bound state remains uncharacterized. Here we show that the repeat region of tau, which has been reported both to mediate tau microtubule interactions and to constitute the proteolysis-resistant core of disease-associated tau aggregates, associates with lipid micelles and vesicles and folds into an ordered structure upon doing so. In addition to providing the first structural insights into a folded state of tau, our results support a role for lipid membranes in mediating tau function and tau pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2006.07.018DOI Listing

Publication Analysis

Top Keywords

tau
9
folding repeat
4
repeat domain
4
domain tau
4
tau binding
4
binding lipid
4
lipid surfaces
4
surfaces microtubule-associated
4
microtubule-associated protein
4
protein tau
4

Similar Publications

Kinetics of recovery and normalization of running biomechanics following aerobic-based exercise-induced muscle damage in recreational male runners.

J Sci Med Sport

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:

Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.

Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.

View Article and Find Full Text PDF

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Core blood biomarkers of Alzheimer's disease: A single-center real-world performance study.

J Prev Alzheimers Dis

February 2025

Neurology, Fondazione IRCCS "San Gerardo dei Tintori", Monza, Italy; Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy; Laboratory of Neurobiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy. Electronic address:

Background: The new criteria for Alzheimer's disease pave the way for the introduction of core blood biomarkers of Alzheimer's disease (BBAD) into clinical practice. However, this depends on the demonstration of sufficient accuracy and robustness of BBADs in the intended population.

Objectives: To assess the diagnostic performance of core BBADs in our memory clinic, comparing them with cerebrospinal fluid (CSF) analysis.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!