Spin waves in quasiequilibrium spin systems.

Phys Rev Lett

Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA.

Published: July 2006

Using the Landau Fermi liquid theory we discovered a new propagating transverse spin wave in a paramagnetic system which is driven slightly out of equilibrium without applying an external magnetic field. We find a gapless mode which describes the uniform precession of the magnetization in the absence of a magnetic field. We also find a gapped mode associated with the precession of the spin current around the internal field. The gapless mode has a quadratic dispersion leading to a T3/2 contribution to the specific heat. These modes significantly contribute to the dynamic structure function.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.047204DOI Listing

Publication Analysis

Top Keywords

magnetic field
8
field find
8
gapless mode
8
spin
4
spin waves
4
waves quasiequilibrium
4
quasiequilibrium spin
4
spin systems
4
systems landau
4
landau fermi
4

Similar Publications

Bayesian Optimization Of NeuroStimulation (BOONStim).

Brain Stimul

January 2025

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

View Article and Find Full Text PDF

Emerging roles of hyaluronic acid hydrogels in cancer treatment and wound healing: A review.

Int J Biol Macromol

January 2025

Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, No. 89 Xiguan Road, Gaozhou 525299, Guangdong, China. Electronic address:

Hyaluronic acid (HA)-derived hydrogels signify a noticeable development in biomedical uses, especially in cancer treatment and wound repair. Cancer continues to be one of the foremost causes of death globally, with current therapies frequently impeded by lack of specificity, serious side effects, and the emergence of resistance. HA hydrogels, characterized by their distinctive three-dimensional structure, hydrophilic nature, and biocompatibility, create an advanced platform for precise drug delivery, improving therapeutic results while minimizing systemic toxicity.

View Article and Find Full Text PDF

Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res

January 2025

Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.

View Article and Find Full Text PDF

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

Quantum Thermodynamic Derivation of the Energy Resolution Limit in Magnetometry.

Phys Rev Lett

December 2024

University of Crete, Department of Physics, Heraklion 70013, Greece.

It was recently demonstrated that a multitude of realizations of several magnetic sensing technologies satisfy the energy resolution limit, which connects a quantity composed by the variance of the magnetic field estimate, the sensor volume and the measurement time, and having units of action, with ℏ. A first-principles derivation of this limit is still elusive. We here present such a derivation based on quantum thermodynamic arguments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!