We present the first results of directional point-contact measurements in Mg1-xMnxB2 single crystals, with x up to 0.015 and bulk Tc down to 13.3 K. The order parameters Deltasigma and Deltapi were obtained by fitting the conductance curves with the two-band Blonder-Tinkham-Klapwijk model. BothDeltapi and Deltasigma decrease with the critical temperature of the junctions TAC, but remain clearly distinct up to the highest Mn content. Once analyzed within the Eliashberg theory, the results indicate that spin-flip scattering is dominant in the sigma band, as also confirmed by first-principles band-structure calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.037001DOI Listing

Publication Analysis

Top Keywords

single crystals
8
magnetic impurities
4
impurities two-band
4
two-band superconductor
4
superconductor point-contact
4
point-contact study
4
study mn-substituted
4
mn-substituted single
4
crystals directional
4
directional point-contact
4

Similar Publications

Tagging RNAs with fluorogenic aptamers has enabled imaging of transcripts in living cells, thereby revealing novel aspects of RNA metabolism and dynamics. While a diverse set of fluorogenic aptamers has been developed, a new generation of aptamers are beginning to exploit the ring-opening of spirocyclic rhodamine dyes to achieve robust performance in live mammalian cells. These fluorophores have two chemical states: a colorless, cell-permeable spirocyclic state and a fluorescent zwitterionic state.

View Article and Find Full Text PDF

Mitigating the Efficiency Deficit in Single-Crystal Perovskite Solar Cells by Precise Control of the Growth Processes.

ACS Nano

January 2025

Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.

The power conversion efficiencies (PCEs) of polycrystalline perovskite solar cells (PC-PSCs) have now reached a plateau after a decade of rapid development, leaving a distinct gap from their Shockley-Queisser limit. To continuously mitigate the PCE deficit, nonradiative carrier losses resulting from defects should be further optimized. Single-crystal perovskites are considered an ideal platform to study the efficiency limit of perovskite solar cells due to their intrinsically low defect density, as demonstrated in bulk single crystals.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Quantum emitters in solid-state materials are highly promising building blocks for quantum information processing and communication science. Recently, single-photon emission from van der Waals materials has been reported in transition metal dichalcogenides and hexagonal boron nitride, exhibiting the potential to realize photonic quantum technologies in two-dimensional materials. Here, we report the generation of room temperature single-photon emission from exfoliated and thermally annealed single crystals of van der Waals α-MoO.

View Article and Find Full Text PDF

Two-dimensional (2D) PdSe atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe films with single-crystal domain areas exceeding 30 μm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!