Potential energy landscape of monolayer-surface systems governed by repulsive lateral interactions: the case of (3 x 3)-I-Pt(111).

Phys Rev Lett

Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, A.P. 55-534, México D.F. 09340, México.

Published: July 2006

Combined density functional theory (DFT) and Monte Carlo (MC) approach is applied to study the potential energy landscape of four iodine atoms adsorbed on the Pt(111) surface in a (3 x 3) unit cell. Three critical points were identified: (3 x 3)-sym and (3 x 3)-asym, corresponding to structures well known from experimental studies, while the third one (3 x 3)-zigzag is a new structure not reported before. An interaction model fitted to DFT calculations allows us to explain the difference between arrangements of iodine monolayer in vacuum, air, and solution environments as a result of different repulsion regimes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.036102DOI Listing

Publication Analysis

Top Keywords

potential energy
8
energy landscape
8
landscape monolayer-surface
4
monolayer-surface systems
4
systems governed
4
governed repulsive
4
repulsive lateral
4
lateral interactions
4
interactions case
4
case 3-i-pt111
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction.

J Chem Theory Comput

January 2025

Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.

We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.

View Article and Find Full Text PDF

Nickel hydroxide (Ni(OH)) is considered to be one of the most promising electrocatalysts for urea oxidation reaction (UOR) under alkaline conditions due to its flexible structure, wide composition and abundant 3D electrons. However, its slow electrochemical reaction rate, high affinity for the reaction intermediate *COOH, easy exposure to low exponential crystal faces and limited metal active sites that seriously hinder the further improvement of UOR activities. Herein it is reported electrocatalyst composed of rich oxygen-vacancy (O) defects with amorphous SeO-covered Ni(OH) (O-SeO/Ni(OH)).

View Article and Find Full Text PDF

Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.

View Article and Find Full Text PDF

Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!