Phase transitions occupy a central role in physics, due both to their experimental ubiquity and their fundamental conceptual importance. The explanation of universality at phase transitions was the great success of the theory formulated by Ginzburg and Landau, and extended through the renormalization group by Wilson. However, recent theoretical suggestions have challenged this point of view in certain situations. In this Letter we report the first large-scale simulations of a three-dimensional model proposed to be a candidate for requiring a description beyond the Landau-Ginzburg-Wilson framework: we study the phase transition from the dimer crystal to the Coulomb phase in the cubic dimer model. Our numerical results strongly indicate that the transition is continuous and is compatible with a tricritical universality class, at variance with previous proposals.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.030403DOI Listing

Publication Analysis

Top Keywords

phase transition
8
dimer model
8
phase transitions
8
phase
5
unconventional continuous
4
continuous phase
4
transition three-dimensional
4
three-dimensional dimer
4
model phase
4
transitions occupy
4

Similar Publications

Nanoscale Magnetic Ordering Dynamics in a High Curie Temperature Ferromagnet.

Nano Lett

January 2025

Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.

Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

Reconstructive Phase Transition Enables Abnormal Negative Thermal Quenching of Photoluminescence in a 1D Hybrid Perovskite.

Inorg Chem

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, PR China.

Organic-inorganic hybrid perovskites (OIHPs) have attracted enormous attention owing to their intriguing structural tunability and diverse functional properties. Reconstructive phase transitions, involving the breaking and reconstruction of chemical bonds, have rarely been found in such materials; however, these features may induce many intriguing physical properties in optics, ferroelectrics, ferromagnetics, and so forth. Here, we utilized the weak and switchable coordination bonds of HETMA-MnCl (HETMA = (2-hydroxyethyl) trimethylammonium) to construct a 1D hybrid perovskite employing a neutral framework.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!