We report results of a study of the B(s)(0) oscillation frequency using a large sample of B(s)(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B(s)(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At delta m(s) = 19 ps(-1), the amplitude deviates from the hypothesis A= 0(1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, delta m(s), gives a most probable value of 19 ps(-1) and a range of 17 < delta m(s) < 21 ps(-1)at the 90% C.L., assuming Gaussian uncertainties. This is the first direct two-sided bound measured by a single experiment. If delta m(s) lies above 22 ps(-1), then the probability that it would produce a likelihood minimum similar to the one observed in the interval 16-22 ps(-1) is (5.0 +/- 0.3)%.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.97.021802DOI Listing

Publication Analysis

Top Keywords

oscillation frequency
16
bs0 oscillation
8
ps-1
5
direct limits
4
oscillation
4
limits oscillation
4
frequency
4
frequency report
4
report study
4
study bs0
4

Similar Publications

Effect of in vitro exposure of first-line antiretrovirals on healthy human spermatozoa on kinematics and motility.

Int Urol Nephrol

January 2025

Department of Urology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa.

Purpose: Contemporary antiretroviral (ARV) medications are used by millions of men for HIV treatment worldwide. Limited data exist on their direct effect on sperm motility. This pilot study hypothesizes that in vitro exposure to ARVs will reduce sperm kinematic and motility parameter values.

View Article and Find Full Text PDF

In renewable power systems, the interaction between generators, power electronic devices, and the grid has led to frequent high-frequency oscillation (HFO) events. These events can result in significant generation losses and pose serious threats to system stability. Therefore, the rapid and accurate HFO parameter estimation is crucial for early warning and effective mitigation of HFO.

View Article and Find Full Text PDF

Background: Twitter (subsequently rebranded as X) is acknowledged by US health agencies, including the US Centers for Disease Control and Prevention (CDC), as an important public health communication tool. However, there is a lack of data describing its use by state health agencies over time. This knowledge is important amid a changing social media landscape in the wake of the COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is characterized by cognitive decline and increased seizure susceptibility due to brain damage and neural disruptions. This study examines the relationship between cognitive deterioration and seizure pathology in hAPP-J20 transgenic Alzheimer's mice, a model known for amyloid plaque deposition and heightened seizure activity.

Method: We observed hAPP-J20 mice aged 8 to 28 weeks using long-term wireless telemetry to assess hippocampal local field potential, sampled at 2 kHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!