Microwave transmission of a compound metal grating.

Phys Rev Lett

Electromagnetic Materials Group, School of Physics, University of Exeter, Exeter EX4 4QL, UK.

Published: June 2006

AI Article Synopsis

  • An array of subwavelength slits in a metallic substrate creates multiple resonances, leading to distinct transmission peaks similar to Fabry-Perot resonators.
  • The introduction of additional slits per period results in a more complex grating structure, enhancing the overall resonance behavior.
  • This study explores the relationship between these resonances and the band structure of diffractively coupled surface waves, providing deeper insight into the underlying mechanisms.

Article Abstract

An array of subwavelength slits in a metallic substrate supports a series of Fabry-Perot-like resonances, where each harmonic results in a transmission peak. Addition of extra slits per period yields a compound grating with a structure factor associated with the basis. In this study each repeat period is comprised of a central slit flanked by a pair of narrower slits. It supports three resonances for every Fabry-Perot-like solution. New and useful insight into this phenomenon is gained by describing each of the modes in terms of the band structure of diffractively coupled surface waves.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.257402DOI Listing

Publication Analysis

Top Keywords

microwave transmission
4
transmission compound
4
compound metal
4
metal grating
4
grating array
4
array subwavelength
4
subwavelength slits
4
slits metallic
4
metallic substrate
4
substrate supports
4

Similar Publications

With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).

View Article and Find Full Text PDF

Wireless microwave-to-optical conversion via programmable metasurface without DC supply.

Nat Commun

January 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.

Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.

View Article and Find Full Text PDF

Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.

View Article and Find Full Text PDF

A data transmission delay compensation algorithm for an interactive communication network of an offshore oil field operation scene in severe weather is proposed. To solve the problem of unstable microwave signals and a large amount of noise in the communication network caused by bad weather, the communication network signal denoising method based on Lagrange multiplier symplectic singular value mode decomposition is adopted, and the communication network data denoising process is realized through five steps; phase space reconstruction, symplectic geometric similarity transformation, grouping, diagonal averaging, and adaptive reconstruction. Simultaneously, the weak communication signal is compensated after being captured, that is, the characteristics of the weak signal are enhanced.

View Article and Find Full Text PDF

Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!