We show that a model proposed by Rubin, Rosenau, and Gottlieb [J. Appl. Phys. 77, 4054 (1995)] for dispersion caused by an inherent material characteristic length belongs to the class of simple materials. Therefore, it is possible to generalize the idea of Rubin, Rosenau, and Gottlieb to include a wide range of material models, from nonlinear elasticity to turbulence. Using this insight, we are able to fine-tune nonlinear and dispersive effects in the theory of nonlinear elasticity in order to generate pulse solitary waves and also bulk traveling waves with compact support.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.73.065604 | DOI Listing |
J Acoust Soc Am
January 2025
Laboratoire Ondes et Milieux Complexes LOMC UMR CNRS 6294, Université Le Havre Normandie, 75 rue Bellot, Le Havre, France.
Inhomogeneous media made of random configurations of coated circular cylinders are considered. The effective properties-wave number, mass density, bulk modulus-are discussed and illustrated. The effects of the volume fraction of the scatterers and surrounding fluid are also examined.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanics of Materials and Constructions (MeMC), Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.
View Article and Find Full Text PDFSci Rep
January 2025
ISQI, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland.
High-resolution Brillouin spectroscopy was employed to investigate the anisotropy in surface wave velocities within a bulk single crystal of SbTe, a well-known layered van der Waals material. By leveraging the bulk elastic constants derived from various simulation methods, we were able to theoretically calculate the distribution of surface acoustic phonon velocities on the cleavage plane of the material. Upon analyzing multiple simulation results, it became evident that the most significant discrepancies arose in the calculations of the elastic constant c, with values ranging from 48 to 98 GPa.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electrical and Computer Engineering Department, Northeastern University, Boston, MA 02115, USA.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China.
High-performance acoustic resonators based on single-crystalline piezoelectric thin films have great potential in wireless communication applications. This paper presents the modeling, fabrication, and characterization of laterally excited bulk resonators (XBARs) utilizing the suspended ultra-thin (~420 nm) LiTaO (LT, with 42° YX-cut) film. The finite element analysis (FEA) was performed to model the LT-based XBARs precisely and to gain further insight into the physical behaviors of the acoustic waves and the loss mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!