Mental retardation, facial dysmorphisms, seizures, and brain abnormalities are features of 6q terminal deletions. We have ascertained five patients with 6q subtelomere deletions (four de novo, one as a result of an unbalanced translocation) and determined the size of the deletion ranging from 3 to 13 Mb. Our patients showed a recognizable phenotype including mental retardation, characteristic facial appearance, and a distinctive clinico-neuroradiological picture. Focal epilepsy with consistent electroencephalographic features and with certain brain anomalies on neuroimaging studies should suggest 6q terminal deletion. The awareness of the distinctive clinical picture will help in the diagnosis of this chromosomal abnormality.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.31435DOI Listing

Publication Analysis

Top Keywords

terminal deletion
8
mental retardation
8
clinical phenotype
4
phenotype molecular
4
molecular characterization
4
characterization terminal
4
deletion syndrome
4
syndrome cases
4
cases mental
4
retardation facial
4

Similar Publications

Pathological myocardial hypertrophy can induce heart failure with high mortality, it is necessary to explore its pathogenesis. Tripartite motif-containing 26 (TRIM26) belongs to the multidomain E3 ubiquitin ligase family. We observed increased expression of TRIM26 in the myocardium of C57BL/6 mice subjected to transverse aortic constriction (TAC) surgery and neonatal rat cardiomyocytes (NRCMs) treated with phenylephrine (PE).

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Objective: To explore the clinical phenotype, pregnancy outcome and follow-up of fetuses with 15q11.2BP1-BP2 microdeletions in order to provide a basis for prenatal and reproductive consultation.

Methods: From March 2019 to December 2023, 20 fetuses who were diagnosed with 15q11.

View Article and Find Full Text PDF

DUO1 Activated Zinc Finger (AtDAZ) protein role in the generative cell body morphogenesis.

Plant Mol Biol

January 2025

National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.

Arabidopsis MYB transcription factor, AtDUO1 regulates generative cell body (GC) morphogenesis from round to semi and fully elongated forms before pollen mitosis-II (PM II). It was hypothesised that DUO1 might regulate morphogenesis through any of its direct target genes or components of the DUO1-DAZ1 network. The developmental analysis of plants harbouring T-DNA insertions in some DUO1 target genes using light and fluorescence microscopy revealed abnormal GC morphogenesis only in daz1 and daz2, but gcs1, trm16, mapkkk10, mapkkk20, tet11, and tip1 all undergo normal elongation indicating that these target genes have no important roles in morphogenesis or may be redundant.

View Article and Find Full Text PDF

Most studies on the docking of ivermectin on the spike protein of SARS-CoV-2 concern the receptor binding domain (RBD) and, more precisely, the RBD interface recognized by the ACE2 receptor. The N-terminal domain (NTD), which controls the initial attachment of the virus to lipid raft gangliosides, has not received the attention it deserves. In this study, we combined molecular modeling and physicochemical approaches to analyze the mode of interaction of ivermectin with the interface of the NTD-facing lipid rafts of the host cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!