Heme, a major iron source, is transported through the outer membrane of Gram-negative bacteria by specific heme/hemoprotein receptors and through the inner membrane by heme-specific, periplasmic, binding protein-dependent, ATP-binding cassette permeases. Escherichia coli K12 does not use exogenous heme, and no heme uptake genes have been identified. Nevertheless, a recombinant E. coli strain expressing just one foreign heme outer membrane receptor can use exogenous heme as an iron source. This result suggests either that heme might be able to cross the cytoplasmic membrane in the absence of specific carrier or that there is a functional inner membrane heme transporter. Here, we show that to use heme iron E. coli requires the dipeptide inner membrane ATP-binding cassette transporter (DppBCDF) and either of two periplasmic binding proteins: MppA, the L-alanyl-gamma-D-glutamyl-meso-diaminopimelate binding protein, or DppA, the dipeptide binding protein. Thus, wild-type E. coli has a peptide/heme permease despite being unable to use exogenous heme. DppA, which shares sequence similarity with the Haemophilus influenzae heme-binding protein HbpA, and MppA are functional heme-binding proteins. Peptides compete with heme for binding both "in vitro" and "in vivo."
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1568943 | PMC |
http://dx.doi.org/10.1073/pnas.0605440103 | DOI Listing |
Brain Res
January 2025
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.
View Article and Find Full Text PDFBiochemistry
January 2025
Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
The mitochondrial outer membrane (OMM) β-barrel proteins link the mitochondrion with the cytosol, endoplasmic reticulum, and other cellular membranes, establishing cellular homeostasis. Their active insertion and assembly in the outer mitochondrial membrane is achieved in an energy-independent yet highly effective manner by the Sorting and Assembly Machinery (SAM) of the OMM. The core SAM constituent is the 16-stranded transmembrane β-barrel Sam50.
View Article and Find Full Text PDFEMBO Rep
January 2025
LMU Munich, Biozentrum-Cell Biology, 82152, Planegg-Martinsried, Germany.
Import and assembly of mitochondrial proteins into multimeric complexes are essential for cellular function. Yet, many steps of these processes and the proteins involved remain unknown. Here, we identify a novel pathway for disulfide bond formation and assembly of mitochondrial inner membrane (IM) proteins.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
Alzheimers Dement
December 2024
The University of British Columbia, Vancouver, BC, Canada.
Background: An imbalance between the production and clearance of amyloid beta (Aß) has emerged as a major cause of sporadic Alzheimer's disease (AD). Retinal wholemount studies can identify cell-specific involvement in Aß clearance mechanisms which cannot be accomplished in the brain ex vivo.
Methods: Eye cross-sections of double transgenic (Tg, APP-PS1) and non-carrier sibling female mice (n = 16, 4 per group) at 3- and 9- month ages were probed with antibodies 6E10 (Aβ1-16 amino-acid residues, soluble and insoluble species), ionized calcium-binding adapter molecule 1 (IBA1, microglia/macrophage), glial fibrillary acidic protein (GFAP, astrocytes), glutamine synthetase (GS, Müller cells) and aquaporin-4 (AQP4, membrane water channel) using immunofluorescence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!