Stature is a highly heritable trait under both polygenic and major gene control. We aimed to identify genetic regions linked to idiopathic short stature (ISS) in childhood, through a whole genome scan in 92 families each with two affected children with ISS, including constitutional delay of growth and puberty and familial short stature. Linkage analysis was performed for ISS, height and bone age retardation. Chromosome 12q11 showed significant evidence of linkage to ISS and height (maximum non-parametric multipoint LOD scores 3.18 and 2.31 at 55-58 cM, between D12S1301 and D12S1048), especially in sister-sister pairs (LOD score of 1.9 for ISS in 22 pairs). These traits were also linked to chromosomes 1q12 and 2q36. The region on chromosome 12q11 had previously shown significant linkage to adult stature in several genome scans and harbors the vitamin D receptor gene, which has been associated with variation in height. A single nucleotide polymorphism (SNP) (rs10735810, FokI), which leads to a functionally relevant alteration at the protein level, showed preferential transmission of the transcriptionally more active G-allele to affected children (P=0.04) and seems to be responsible for the observed linkage (P=0.05, GIST test). Bone age retardation showed moderate linkage to chromosomes 19p11-q11 and 7p14 (LOD scores 1.69 at 57 cM and 1.42 at 50 cM), but there was no clear overlap with linkage regions for stature. In conclusion, we identified significant linkage, which might be due to a functional SNP in the vitamin D receptor (VDR) gene and could be responsible for up to 34% of ISS cases in the population.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddl218DOI Listing

Publication Analysis

Top Keywords

vitamin receptor
12
short stature
12
receptor gene
8
idiopathic short
8
linkage
8
iss height
8
bone age
8
age retardation
8
chromosome 12q11
8
lod scores
8

Similar Publications

The role of the vitamin D receptor (VDR) in inflammatory bowel disease (IBD) is poorly described. The aim of this study was to examine the relationship between immunohistochemical VDR expression and IBD activity. The immunohistochemical expression of VDR was analysed in biopsies from active and inactive IBD in 28 patients (ulcerative colitis: 21, Crohn's disease: 7) and 12 non-IBD controls.

View Article and Find Full Text PDF

Dynamic single cell transcriptomics defines kidney FGF23/KL bioactivity and novel segment-specific inflammatory targets.

Kidney Int

January 2025

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA, 46202; Department of Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA, 46202. Electronic address:

Fibroblast growth factor 23 (FGF23) via its coreceptor αKlotho (KL) provides critical control of phosphate metabolism, which is altered in both rare and very common syndromes. However, the spatial-temporal mechanisms dictating kidney FGF23 functions remain poorly understood. Thus, developing approaches to modify specific FGF23-dictated pathways has proven problematic.

View Article and Find Full Text PDF

Photoperiodic changes induce seasonal variations in vitamin D levels, which can affect reproductive function. The muskrat, a seasonal breeder, possesses a pair of scented glands that secrete musky substances to attract mates. The scented glands can also synthesize androgens, which regulate their function through autocrine or paracrine signaling.

View Article and Find Full Text PDF

Design, synthesis, and anti-liver fibrosis activity of novel non-steroidal vitamin D receptor agonists based on open-ring steroid scaffold.

Eur J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, PR China. Electronic address:

Vitamin D receptor (VDR) has emerged as a crucial target for the treatment of hepatic fibrosis, a condition characterized by excessive deposition of extracellular matrix (ECM) components leading to impaired liver function. Activation of VDR has been shown to inhibit the transformation of hepatic stellate cells (HSCs), which play a key role in the development of liver fibrosis, thus reducing ECM production. In this study, a series of 37 non-steroidal VDR agonists with novel scaffold were designed and synthesized utilizing the scaffold hopping strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!