Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The etiology and treatment of hypertrophic scar remain puzzles even after decades of research. A significant reason is the lack of an accepted animal model of the process. The female, red Duroc pig model was described long ago. Since the skin of the pig is similar to that of humans, we are attempting to validate this model and found it to be encouraging. In this project we quantified myofibroblasts, mast cells and collagen nodules in the thick scar of the Duroc pig and compared these to the values for human hypertrophic scar. We found the results to be quite similar and so further validated the model. In addition, we observed that soon after wounding an inflammatory cell layer forms. The thickness of the inflammatory layer approaches the thickness of the skin removed as if the remaining dermis "knows" how much dermis is gone. In deep wounds this inflammatory layer thickens and this thickness is predictive of the thickness of the ultimate scar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878281 | PMC |
http://dx.doi.org/10.1016/j.burns.2006.03.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!