Purpose: Substantial reductions of radiation doses to heart and lung can be achieved using breathing adaptation of adjuvant radiotherapy following conservative surgery for breast cancer. The purpose of this study was to estimate the radiobiological implications after routine use of an end-inspiration gated treatment, and to compare the results with predictions based on pre-clinical CT-studies.

Patients And Methods: Nineteen consecutive patients with axillary lymph node-positive left-sided breast cancer were referred for adjuvant radiotherapy after breast conserving surgery. Treatment was performed with gating in the end-inspiration phase of audio-coached enhanced free breathing. The target intended to encompass the remaining breast, ipsilateral internal mammary and periclavicular nodes, and the prescription dose was 48Gy in 24 fractions. A three-field mono-isocentric conformal technique using deep tangentials and a supraclavicular field was employed. NTCPs were calculated using the relative seriality model for the heart, and the model proposed by Burman et al. for the lung. The observed values were compared to those predicted from two previous CT-studies for a deep inspiration breath-hold technique and an uncoached end-inspiration gating technique.

Results: The ipsilateral lung V(50) (relative volume receiving more than 50% of the prescription dose) had a median value of 23.7% (range 10.8-35.1%) over the patient population. The corresponding median lung pneumonitis probability was 1.1% (range 0-14%). The median heart V(50) was 0.8% (range 0-19.1%) with a corresponding median cardiac mortality NTCP of 0.1% (range 0-5.7%). These results compare well with the predictions of our previous CT-studies. There is a significant reduction in dose to the left anterior descending coronary artery for the enhanced end-inspiration gating technique compared to the uncoached end-inspiration technique employed in the CT-studies.

Conclusions: In a routine clinical practice involving adjuvant breast radiotherapy gated in an enhanced end-inspiration phase, remarkably low doses to organs at risk are observed. The corresponding cardiac and pulmonary complication risks are of the order of 1% and smaller.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2006.07.020DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cardiac pulmonary
8
pulmonary complication
8
routine end-inspiration
8
end-inspiration gated
8
adjuvant radiotherapy
8
end-inspiration phase
8
prescription dose
8
previous ct-studies
8
uncoached end-inspiration
8

Similar Publications

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).

Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.

View Article and Find Full Text PDF

Clinical Relevance and Drug Modulation of PPAR Signaling Pathway in Triple-Negative Breast Cancer: A Comprehensive Analysis.

PPAR Res

December 2024

Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, China.

Triple-negative breast cancer (TNBC) is highly heterogeneous and poses a significant medical challenge due to limited treatment options and poor outcomes. Peroxisome proliferator-activated receptors (PPARs) play a crucial role in regulating metabolism and cell fate. While the association between PPAR signal and human cancers has been a topic of concern, its specific relationship with TNBC remains unclear.

View Article and Find Full Text PDF

Previous studies have demonstrated that many healthcare workers in low- and middle-income countries (LMICs) lack the appropriate training and knowledge to recognize and diagnose breast cancer at an early stage. As a result, women in LMICs are frequently diagnosed with late-stage breast cancer (Stage III/IV) with a poor prognosis. We hosted a 1-day breast cancer educational conference directed towards healthcare workers in Honduras.

View Article and Find Full Text PDF

Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer.

Oncol Res

December 2024

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.

Background: Triple-negative breast cancer (TNBC), characterized by its lack of traditional hormone receptors and HER2, presents a significant challenge in oncology due to its poor response to conventional therapies. Autophagy is an important process for maintaining cellular homeostasis, and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors. In contrast to targeting protein activity, intervention with protein-protein interaction (PPI) can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!