Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1952185 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2006.06.033 | DOI Listing |
J Travel Med
January 2025
National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France.
Cell Genom
January 2025
National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China. Electronic address:
Endometriosis is a chronic condition with limited therapeutic options. The molecular aberrations promoting ectopic attachment and interactions with the local microenvironment sustaining lesion growth have been unclear, prohibiting development of targeted therapies. Here, we performed single-cell and spatial transcriptomic profiling of ectopic lesions and eutopic endometrium in endometriosis.
View Article and Find Full Text PDFNature
January 2025
Tamar Valley National Landscape, Gunnislake, UK.
Freshwater ecosystems are highly biodiverse and important for livelihoods and economic development, but are under substantial stress. To date, comprehensive global assessments of extinction risk have not included any speciose groups primarily living in freshwaters. Consequently, data from predominantly terrestrial tetrapods are used to guide environmental policy and conservation prioritization, whereas recent proposals for target setting in freshwaters use abiotic factors.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA.
Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp.
View Article and Find Full Text PDFElife
January 2025
Department of Chemistry & Biochemistry, University of Delaware, Newark, United States.
The SARS-CoV-2 main protease (M or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 M. TRMT1 installs the ,-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!