Apart from acetyl-choline (Ach), adenosine-5'-trisphosphate (ATP) is thought to play a role in neuromuscular function, however little information is available on its cellular physiology. As such, effects of ATP and adenosine on contractility of mice diaphragmatic and skeletal muscles (m. extensor digitorum longa-MEDL) have been investigated in in vitro experiments. Application of carbacholine (CCh) in vitro in different concentrations led to pronounced muscle contractions, varying from 9.15+/-4.76 to 513.13+/-15.4 mg and from 44.65+/-5.01 to 101.46+/-9.11 mg for diaphragm and MEDL, respectively. Two hundred micromolars of CCh in both muscles caused the contraction with the 65% (diaphragm) to 75% (MEDL) of maximal contraction force-this concentration was thus used in further experiments. It was found that application of ATP (100 microM) increased the force of diaphragmatic contraction caused by CCh (200 microM) from 335.2+/-51.4 mg (n=21) in controls to 426.5+/-47.8 mg (n=10; P<0.05), but decreased the contractions of MEDL of CCh from 76.6+/-6.5mg (n=26) in control to 40.2+/-9.0mg (n=8; P<0.05). Application of adenosine (100 microM) had no effect on CCh-induced contractions of these muscles. Resting membrane potential (MP) measurements using sharp electrodes were done at 10, 20 and 30 min after the application of ATP and adenosine. Diaphragm showed depolarization from 75+/-0.6 down to 63.2+/-1.05, 57.2+/-0.96 and 53.6+/-1.1 mV after 10, 20 and 30 min of exposition, respectively (20 fibers from 4 muscles each, P<0.05 in all three cases). Adenosine showed no effect on diaphragmatic MP. Both agents were ineffective in case of MEDL. The effects of ATP in both tissues were abolished by suramin (100 microM), a P2-receptor antagonist, and chelerythrin (50 microM), a specific protein-kinase C (PKC) inhibitor, but were not affected by 1H-[1,2,4]-oxadiazolo-[4,3-alpha]-quinoxalin-1-one (ODQ, 1 microM), a guanylyl-cyclase inhibitor, or by adenosine-3,5-monophosphothioate (Rp-cAMP, 1 microM), a protein-kinase A (PKA) inhibitor. Besides the action on contractile activity, ATP (100 microM) led to a significant (P<0.001) depolarization of diaphragm muscle fibers from 74.5+/-2.3 down to 64+/-2.1, 58.2+/-2.2 and 54.3+/-2.4 mV after 10, 20 and 30 min of incubation, respectively. Incubation of MEDL with the same ATP concentration showed no significant change of MP. Denervation of the muscles for 28 days led to a decrease of CCh-induced contractions of diaphragm down to 171.1+/-34.5mg (n=11, P<0.05), but increased the contractile force of MEDL up to 723.9+/-82.3mg (n=9, P<0.01). Application of ATP elevated the contractility of denervated diaphragm caused by CCh up to normal values (311.1+/-79.7 mg, n=6, P>0.05 versus control), but did not significantly affect of contractility of MEDL, which became 848.1+/-62.7 mg (n=6). These results show that the effects of ATP on both diaphragmatic and skeletal muscles are mediated through P2Y receptors coupled to chelerytrin-sensitive protein-kinase C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2006.06.007 | DOI Listing |
Adv Biol Regul
December 2024
Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:
Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:
The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.
View Article and Find Full Text PDFCell Calcium
December 2024
Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, 89557, USA. Electronic address:
Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Recent research has revealed an accumulation of microplastics (MPs) in the environment and human tissues, giving rise to concerns about their potential toxicity. The kidney is a vital organ responsible for various physiological functions. Early kidney development is crucial for ensuring proper structure and function.
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Oxidative phosphorylation sharply decreases upon classical macrophage activation, as mitochondria are thought to shift from ATP production towards accumulating signals that amplify effector function. However, evidence is conflicting regarding whether this collapse in respiration is essential or dispensable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!