Studies were conducted to elucidate co-receptor spectrum and function of the inflammatory receptor, CMKLR1/ChemR23, which was recently identified as the receptor for the cystatin-like chemoattractant, TIG2, also named chemerin. An infection model was applied based on stably transfected NP-2.CD4 host cells expressing various co-receptor constructs and exposed to panels of HIV-1, HIV-2 and SIV primary isolates. In a panel of 27 HIV-1 isolates tested, 12 isolates could use CMKLR1/ChemR23. As expected from a relatively high sequence homology with the extracellular domains of CCR3, HIV-1 isolates showing R3 tropism were particularly efficient in using CMKLR1/ChemR23. In addition, 5 out of 7 HIV-2 isolates and 13 out of 15 SIV (SMM-3 origin) used CMKLR1/ChemR23, in accordance with the previously documented ability of these isolates to use several co-receptors. In order to define important extracellular epitopes for the viral interaction, a hybrid receptor model was applied. This was based on the fact that the rat receptor, although structurally very similar to the human orthologue, was inefficient as viral co-receptor. When the rat receptor was "humanized" to include regions unique to the human receptor (N-terminus or second extracellular loop), exposure to HIV-1, HIV-2 and SIV isolates resulted in infection. The relative importance of the two critical receptor regions differed between HIV-1/HIV-2 on the one hand and SIV on the other. The results strongly support that the chemerin receptor, in the presence of CD4, functions as a "minor co-receptor" promoting infection by these classes of viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2006.07.010DOI Listing

Publication Analysis

Top Keywords

receptor
9
model applied
8
applied based
8
hiv-1 hiv-2
8
hiv-2 siv
8
hiv-1 isolates
8
rat receptor
8
isolates
7
characterization human
4
human chemerin
4

Similar Publications

The nanoscale organization of the Nipah virus fusion protein informs new membrane fusion mechanisms.

Elife

January 2025

Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.

Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition affecting a substantial number of children globally, characterized by diverse aetiologies, including genetic and environmental factors. Emerging research suggests that neurovascular dysregulation during development could significantly contribute to autism. This review synthesizes the potential role of vascular abnormalities in the pathogenesis of ASD and explores insights from studies on valproic acid (VPA) exposure during neural tube development.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Importance: Cardiovascular disease (CVD) and cancer are the leading causes of mortality in the US. Large-scale population-based and mechanistic studies support a direct effect of CVD on accelerated tumor growth and spread, specifically in breast cancer.

Objective: To assess whether individuals presenting with advanced breast cancers are more likely to have prevalent CVD compared with those with early-stage breast cancers at the time of diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!