gamma-Aminobutyric acid (GABA)(B) receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K(+)-currents (GIRK). In some neurons, GABA(B) receptors either cause a tonic GIRK activation or generate a late K(+)-dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward rectifier K(+)-current (CIRK) without requiring G-protein activation. The functional coupling of CIRK with GABA(B) receptors remained unexplored so far. About 50% of rat cerebellar granule cells in the internal granular layer of P19-26 rats showed a sizeable CIRK current. Here, we have investigated CIRK current regulation by GABA(B) receptors in cerebellar granule cells, which undergo GABAergic inhibition through Golgi cells. By using patch-clamp recording techniques and single-cell reverse transcriptase-polymerase chain reaction in acute cerebellar slices, we show that granule cells co-express Kir2 channels and GABA(B) receptors. CIRK current biophysical properties were compatible with Kir2 but not Kir3 channels, and could be inhibited by the GABA(B) receptor agonist baclofen. The action of baclofen was prevented by the GABA(B) receptor blocker CGP35348, involved a pertussis toxin-insensitive G-protein-mediated pathway, and required protein phosphatases inhibited by okadaic acid. GABA(B) receptor-dependent CIRK current inhibition could also be induced by repetitive GABAergic transmission at frequencies higher than the basal autorhythmic discharge of Golgi cells. These results suggest therefore that GABA(B) receptors can exert an inhibitory control over CIRK currents mediated by Kir2 channels. CIRK inhibition was associated with an increased input resistance around rest and caused a approximately 5 mV membrane depolarization. The pro-excitatory action of these effects at an inhibitory synapse may have an homeostatic role re-establishing granule cell readiness under conditions of strong inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2006.04914.x | DOI Listing |
Drug Res (Stuttg)
January 2025
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States.
G protein-coupled receptors (GPCRs) play central roles in regulating cellular responses through heterotrimeric G proteins (GP). Extensive studies have elucidated the complex cellular signaling mediated by GPCRs that accompany dynamic conformational changes upon activation. However, there has been less focus on the role of the GP on the activation process, particularly for class C GPCRs that function as obligate dimers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!