Oxidative addition of methyl iodide to the chiral square-planar complex IrI(CO)(duphos) shows a high level of diastereoselectivity. The basis for the diastereoselectivity of the reaction is best explained based on the crystal structure of IrI(CO)(duphos) in which methyl iodide approach across the two faces is differentiated by the chiral ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic052027vDOI Listing

Publication Analysis

Top Keywords

methyl iodide
12
oxidative addition
8
addition methyl
8
iodide chiral
8
chiral square-planar
8
square-planar complex
8
highly diastereoselective
4
diastereoselective oxidative
4
complex oxidative
4
complex iricoduphos
4

Similar Publications

Polymers with rigid three-dimensional architectures have attracted significant attention due to their high rigidity and intrinsic microporosity. Here, we report the synthesis of a new class of rigid stepladder polymers featuring unique spirodihydroquinoline skeletons. Under the catalysis of a half-sandwich scandium catalyst, quinoline compounds bearing both an aryl substituent (e.

View Article and Find Full Text PDF

A series of new quinazolin-2,4-dione derivatives incorporating amide/eight-membered nitrogen-heterocycles -, in addition, acylthiourea/amide/dithiolan-4-one and/or phenylthiazolidin-4-one - and -. The starting compound was prepared by reaction of 4-(2,4-dioxo-1,4-dihydro-2-quinazolin-3-yl)-benzoyl chloride with ammonium thiocyanate and cyanoacetic acid hydrazide. The reaction of with strong electrophiles, namely, -aminophenol, -amino thiophenol, and/or -phenylene diamine, resulted in corresponding quinazolin-2,4-dione derivatives incorporating eight-membered nitrogen-heterocycles -.

View Article and Find Full Text PDF

Task-Driven Tailored Covalent Organic Framework for Dynamic Capture of Trace Radioactive CH I under High-Flow Rate Conditions.

ACS Cent Sci

November 2024

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.

Article Synopsis
  • The removal of radioactive gaseous iodine, especially methyl iodide, is essential for safe nuclear energy management and waste disposal, but effective capture methods are still being researched.* -
  • This study used a "theory-first" approach to create a new material, piperazine-based covalent organic framework (Pip-COF), designed specifically for high capture efficiency of methyl iodide.* -
  • Testing showed Pip-COF performs exceptionally well, capturing up to 39 mg/g at 75 °C and 78 mg/g at 25 °C, far exceeding previous materials, and the study highlights the importance of rational design in addressing environmental challenges.*
View Article and Find Full Text PDF

Imidazole Encapsulation Enabled by Confinement for I and CHI Coremoval.

Inorg Chem

December 2024

National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China.

Nitrogen-rich small molecules are frequently doped into porous materials to enhance their iodine adsorption properties. To explore how imidazole confinement in metal-organic frameworks (MOFs) affects iodine adsorption, we obtained a UiO-66-based composite by embedding imidazole in UiO-66 pores via solid-phase adsorption (Im@UiO-66). Characterization confirmed that imidazole was successfully confined within the UiO-66 pores, with each unit of UiO-66 accommodating up to 27 imidazole molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Novel copolyimides were created using specific materials (ODPA, BIS P, and DAP) through a two-step process involving thermal imidization followed by quaternization with methyl iodide.
  • The resulting copolyimides were analyzed for structure using various methods (FTIR, NMR, EDX) and showed varying thermal stability and solubility characteristics, especially those with less than 0.3 DAP content.
  • The best ionic conductivity (0.234 S cm) was observed in samples with 0.3 DAP and a specific level of quaternization, while higher DAP contents led to instability likely due to hydrolysis.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!