Removable colored coatings based on calcium alginate hydrogels.

Biomacromolecules

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA.

Published: August 2006

This article describes the creation of a nontoxic, biodegradable coating using calcium alginate and FD&C approved dyes. The coating is robust but is rapidly removed upon treatment with disodium ethylenediamine tetraacetate (EDTA). Dye leaching from calcium alginate films was studied, and it was determined that the efficiency of dye retention is proportional to the degree of cross-linking. Degradation rates were studied on calcium alginate beads serving as a model for a coating. We determined that degradation rates depend on the gel's cross-linking and on the amount of EDTA used. Bead size also influenced the degradation rates; smaller beads degraded faster than larger beads. We show that the coating can be used as an easily removable and environmentally friendly logotype on an artificial turf surface. Applications of these coatings can be extended to food, cosmetic, medicinal, and textile uses and to wherever nontoxic, easily removable colored coating is desired.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm060341qDOI Listing

Publication Analysis

Top Keywords

calcium alginate
16
degradation rates
12
removable colored
8
easily removable
8
coating
5
colored coatings
4
coatings based
4
calcium
4
based calcium
4
alginate
4

Similar Publications

Controlling microbial pollutants is a significant public health concern as they cause several chronic microbial infections and illnesses. In recent years, essential oils (EOs) have become intriguing alternatives for synthetic antimicrobials due to their biodegradability, natural source extraction, and strong antibacterial properties. The bactericidal properties of alginate containing lemon essential oil were examined in this investigation.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Hollow Salt Prepared Through Spray Drying with Alginate Enhances Salinity Perception to Reduce Sodium Intake.

Foods

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.

View Article and Find Full Text PDF

Background: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.

View Article and Find Full Text PDF
Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!