Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of accelerated aging of Municipal Solid Waste Incinerator (MSWI) bottom ash on the leaching of Cu and Mo was studied using a "multisurface" modeling approach, based on surface complexation to iron/aluminum (hydr)oxides, mineral dissolution/precipitation, and metal complexation by humic substances. A novel experimental method allowed us to identify that the solid/liquid partitioning of fulvic acids (FA) quantitatively explains the observed beneficial effect of accelerated aging on the leaching of Cu. Our results suggestthat iron/aluminum (hydr)oxides are the major reactive surfaces that retain fulvic acid in the bottom ash matrix, of which the aluminum (hydr)oxides were found to increase after aging. A new modeling approach, based on the surface complexation of FA on iron/aluminum (hydr)oxides is developed to describe the pH-dependent leaching of FA from MSWI bottom ash. Accelerated aging results in enhanced adsorption of FA to (neoformed) iron/aluminum (hydr)oxides, leading to a significant decrease in the leaching of FA and associated Cu. Accelerated aging was also found to reduce the leaching of Mo, which is also attributed to enhanced adsorption to (neoformed) iron/aluminum (hydr)oxides. These findings provide important new insights that may help to improve accelerated aging technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es052214s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!