We recently reported that the activation of cholecystokinin-2 receptors depress evoked excitatory postsynaptic currents (EPSCs) in nucleus accumbens (NAc) indirectly through gamma-aminobutyric acid (GABA) acting on gamma-aminobutyric acid-B (GABA(B)) receptors. Here, we determined the second messenger system that couples cholecystokinin-2 receptors to the observed synaptic depression. Using in vitro forebrain slices of rats and whole-cell patch recording, we tested the hypothesis that cholecystokinin-2 receptors are coupled to cAMP and protein kinase A signaling pathway. Cholecystokinin-8S induced inward currents and depressed evoked EPSCs. Forskolin, an activator of adenylyl cyclase and rolipram that is an inhibitor of phosphodiesterase type IV, independently increased EPSC amplitude and blocked the inward current and synaptic depression induced by cholecystokinin-8S. Furthermore, the membrane-permeable cAMP analog, 8-bromo-cAMP, blocked the cholecystokinin-8S effects. H89, a protein kinase A inhibitor, also blocked cholecystokinin-8S effects. However, depression of the evoked EPSC by baclofen, a GABA(B) receptor agonist, was not blocked by H89 or forskolin. These findings indicate that cholecystokinin-2, but not GABA(B), receptors are coupled to the adenylyl cyclase-cAMP-protein kinase A signaling pathway in the NAc to induce inward currents and cause synaptic depression.

Download full-text PDF

Source
http://dx.doi.org/10.1139/y05-119DOI Listing

Publication Analysis

Top Keywords

cholecystokinin-2 receptors
16
synaptic depression
12
nucleus accumbens
8
gabab receptors
8
receptors coupled
8
protein kinase
8
kinase signaling
8
signaling pathway
8
blocked cholecystokinin-8s
8
cholecystokinin-8s effects
8

Similar Publications

Several exploratory studies have demonstrated the feasibility of cholecystokinin-2 receptor (CCK2R) targeting in patients with medullary thyroid carcinoma (MTC) and other neuroendocrine tumors (NETs). We report the results of a prospective phase I/IIA pilot study (clinicaltrials.gov NCT06155994) conducted at our center with the Ga-labeled peptide analog DOTA-DGlu-Ala-Tyr-Gly-Trp-(N-Me)Nle-Asp-1-Nal-Phe-NH (Ga-DOTA-MGS5).

View Article and Find Full Text PDF

: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [Ga]Ga-CyTMG and [Ga]Ga-CyFMG. In these probes, the SulfoCy5.

View Article and Find Full Text PDF

Purpose: Radiolabelled minigastrin (MG) analogues targeting the cholecystokinin-2 receptor (CCK2R) have proven to be a promising approach for peptide receptor radionuclide therapy (PRRT). In this study, we report on the radiopharmaceutical development and standardization of the preparation of [Lu]Lu-DOTA-MGS5 using an automated synthesis module. Furthermore, we present the preclinical tests required to move forward towards a first therapeutic clinical trial as well as preliminary clinical dosimetry data.

View Article and Find Full Text PDF

A Membrane-Anchoring Self-Assembling Peptide Allows Bioorthogonal Coupling of Type-I AIEgens for Pyroptosis-Induced Cancer Therapy.

Angew Chem Int Ed Engl

January 2025

Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.

Article Synopsis
  • Researchers developed a dual-targeting peptide, DBCO-pYCCK6, that quickly attaches to cancer cell membranes and enhances the delivery of type-I photosensitizers (PSs) for cancer treatment.
  • * This method improves the labeling speed and targeting of PSs, leading to the effective generation of reactive oxygen species (ROS) upon light exposure, which induces a specific form of cell death called pyroptosis.
  • * In vivo tests showed that this peptide and PS combination significantly reduced tumor growth while promoting immune responses from CD8 cytotoxic T cells, demonstrating a new approach for cancer therapy.
View Article and Find Full Text PDF

Abstract: Cholecystokinin 2 receptor (CCK 2 R) is a promising target for imaging and treatment of medullary thyroid cancer due to its overexpression in over 90% of tumor cells. 68 Ga-DOTA-CCK-66 is a recently introduced PET tracer selective for CCK 2 R, which has shown favorable pharmacokinetics in vivo in preclinical experiments. In order to further investigate safety and suitability of this tracer in the human setting, whole-body distribution and radiation dosimetry were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!