Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A two-level dynamical model of motion pattern formation is developed in which local motion/ nonmotion perceptual decisions are based on inhibitory competition between area V1 detectors responsive to motion-specifying versus motion-independent stimulus information, and pattern-level perceptual decisions are based on inhibitory competition between area MT motion detectors with orthogonal directional selectivity. The model accounts for the effects of luminance perturbations on the relative size of the pattern-level hysteresis effects reported by Hock and Ploeger (2006) and also accounts for related experimental results reported by Hock, Kelso, and Schöner (1993). Single-trial simulations demonstrated the crucial role of local motion/nonmotion bistability and activation-dependent future-shaping interactions in stabilizing perceived global motion patterns. Such interactions maintain currently perceived motion patterns by inhibiting the soon-to-be-stimulated motion detectors that otherwise would be the basis for the perception of an alternative pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03193694 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!