Unique {H(SiR(3))(2)}, (H(2)SiR(3)), H(HSiR(3)), and (H(2))SiR(3) ligand sets supported by the {Fe(Cp)(L)} platform (L=CO, PR(3)).

Chemistry

Institut de Química Computacional, Campus de Montilivi, Universitat de Girona, 17071 Girona, Catalonia, Spain.

Published: November 2006

This work deals with the type and incidence of nonclassical Si--H and H--H interactions in a family of silylhydride complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(X)] (X=SiMe(n)Cl(3-n), H, Me, n=0-3) and [Fe(Cp)(Me(3)P)(SiMe(n)Cl(3-n))(2)H] (n=0-3). DFT calculations complemented by atom-in-molecule analysis and calculations of NMR hydrogen-silicon coupling constants revealed a surprising diversity of nonclassical Si--H and H--H interligand interactions. The compounds [Fe(Cp)(L)(SiMe(n)Cl(3-n))(2)H] (L=CO, PMe(3); n=0-3) exhibit an unusual distortion from the ideal piano-stool geometry in that the silyl ligands are strongly shifted toward the hydride and there is a strong trend towards flattening of the {FeSi(2)H} fragment. Such a distortion leads to short Si--H contacts (range 2.030-2.075 A) and large Mayer bond orders. A novel feature of these extended Si--H interactions is that they are rather insensitive towards the substitution at the silicon atom and the orientation of the silyl ligand relatively the Fe--H bond. NMR spectroscopy and bonding features of the related complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(Me)] (n=0-3) allow for their rationalization as usual eta(2)-Si--H silane sigma-complexes. The series of "dihydride" complexes [Fe(Cp)(OC)(SiMe(n)Cl(3-n))H(2)] (n=0-3) is different from the previous two families in that the type of interligand interactions strongly depends on the substitution on silicon. They can be classified either as usual dihydrogen complexes, for example, [Fe(Cp)(OC)(SiMe(2)Cl)(eta(2)-H(2))], or as compounds with nonclassical H--Si interactions, for example, [Fe(Cp)(OC)(H)(2)(SiMe(3))] (16). These nonclassical interligand interactions are characterized by increased negative J(H,Si) (e.g. -27.5 Hz) and increased J(H,H) (e.g. 67.7 Hz).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200600421DOI Listing

Publication Analysis

Top Keywords

interligand interactions
12
nonclassical si--h
8
si--h h--h
8
substitution silicon
8
interactions
6
n=0-3
5
unique {hsir32}
4
{hsir32} h2sir3
4
h2sir3 hhsir3
4
hhsir3 h2sir3
4

Similar Publications

ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.

View Article and Find Full Text PDF

The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.

View Article and Find Full Text PDF

Niobocene hydride-silyl complexes exhibit intriguing structural characteristics with the potential for direct hydride/silyl exchange, where hydride migration plays a crucial role during conformational interconversion. In this study, quantum chemical calculations were utilized to investigate the transformation pathways involved in hydride/silyl exchange in niobocene trihydride complexes with various dichlorosilanes, including SiClMe, SiClPr, and SiClMePh ligands. The conformational changes and hydride shifts within these niobocene hydride-silyl complexes were examined, and key intermediates were identified.

View Article and Find Full Text PDF

Prediction and Rationalization of Different Photochemical Behaviors of - and -Isomers of [Ru(pyridyltriazole)].

Inorg Chem

September 2024

Department of Physical and Life Sciences & Centre for Functional Materials, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K.

Facial and meridional isomerism of metal complexes is known to result in fundamental differences in photophysical properties. One may also envisage differences in their photochemical reactivity and therefore predict different outcomes of their light-triggered transformations. The - and -isomers of the complex [Ru(pytz)] (- & -, pytz = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole) were separated and isolated.

View Article and Find Full Text PDF

Evidence and Structural Insights into a Ligand-Mediated Phase Transition in the Solvated Ligand Shell of Quantum Dots.

ACS Nano

September 2024

Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

As synthesized, nanocrystal surfaces are typically covered in coordinating organic ligands, and the degree of packing and order of these ligands are ongoing questions in the field of colloidal nanocrystals, particularly in the solution state. Recently, isothermal titration calorimetry coupled with H NMR has been used to probe ligand exchanges on colloidal quantum dots, revealing the importance of the composition of the ligand shell on exchange thermodynamics. Previous work has shown that the geometry and length of a ligand's aliphatic chain can influence the thermodynamics of exchange.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!