Background: Despite maximal ventilatory support, many patients die from hypoxia in the setting of potentially reversible pulmonary failure. There remains a pressing need for additional pulmonary supportive care measures, especially techniques that do not require systemic anticoagulation. The objective of our experiments was to determine whether systemic oxygenation could be increased in a large animal, with induced hypoxia, by perfusing the abdominal cavity with oxygenated perfluorocarbons.

Methods: Fifteen pigs with a mean (+/- SD) weight of 45 +/- 5 kg were intubated and rendered hypoxic by ventilating them with a blend of nitrogen and oxygen to achieve subatmospheric concentrations of inspired oxygen ranging from 18 to 10%, resulting in baseline mean Pao(2) range of 65.9 +/- 9.7 to 26.6 +/- 2.8 mm Hg, respectively. Peritoneal perfusion was performed in eight animals with oxygenated perfluorocarbon and in seven control animals with oxygenated saline solution.

Results: The average increase in Pao(2) with oxygenated perfluorocarbon perfusion, compared to oxygenated saline solution perfusion, ranged from 8.1 to 18.2 mm Hg. A common treatment effect was estimated across all fraction of inspired oxygen (Fio(2)) values, representing the average mean difference in oxygen uptake between oxygenated perfluorocarbon and saline solution, irrespective of the level of Fio(2). This average was 12.8 mm Hg (95% confidence interval, 7.4 to 18.2; p < 0.001). The most clinically relevant results occurred at an Fio(2) of 14%, resulting in a baseline mean Pao(2) of 39.4 +/- 5.0 mm Hg with oxygenated saline solution perfusion, and a mean Pao(2) of 55.3 +/- 7.6 mm Hg with oxygenated perfluorocarbon perfusion. This corresponded to an increase in arterial oxygen saturation from 73 to 89%.

Conclusion: These results of our principle experiments demonstrate that the peritoneal cavity can be used for gas exchange and, in our model, yielded clinically relevant increases in systemic arterial oxygen levels. This technique may have the potential for the supportive care of patients dying from hypoxia in the setting of reversible lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126298PMC
http://dx.doi.org/10.1378/chest.130.2.402DOI Listing

Publication Analysis

Top Keywords

oxygenated perfluorocarbon
20
oxygenated saline
12
saline solution
12
oxygenated
9
peritoneal perfusion
8
systemic oxygenation
8
hypoxia setting
8
setting reversible
8
supportive care
8
inspired oxygen
8

Similar Publications

Article Synopsis
  • Human exposure to perfluorooctanoic acid (PFOA) can lead to ulcerative colitis, but the mechanisms of its toxicity in intestinal cells remain unclear.
  • Researchers studied the effects of PFOA on human colorectal cancer cells (HCT116) by examining cell viability, mitochondrial activity, and gene expression related to metabolism.
  • They found that 300 μmol/L of PFOA significantly reduced the viability of HCT116 cells and altered metabolic gene expression, while lower concentrations (50 μmol/L) increased mitochondrial respiratory activity.
  • The study suggests that mitochondrial activity could indicate PFOA's effects, and specific genes could play a role in the development of ulcerative colitis linked to PFOA exposure
View Article and Find Full Text PDF

Assessing Lung Ventilation and Bronchodilator Response in Asthma and Chronic Obstructive Pulmonary Disease with F MRI.

Radiology

December 2024

From the Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (B.J.P., M.A.N., C.W.H., A.J.S., P.E.T.); Newcastle Magnetic Resonance Centre, Health Innovation Neighbourhood, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom (B.J.P., M.A.N., C.W.H., P.E.T.); Pulmonary, Lung and Respiratory Imaging Sheffield, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom (A.M.M., J.M.W.); Department of Respiratory Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom (I.F.); Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom (R.A.L.); Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom (H.F.F., J.N.S.M.); and Insigneo Institute, University of Sheffield, Sheffield, United Kingdom (J.M.W.).

Background Pulmonary function tests are central to diagnosis and monitoring of respiratory diseases but do not provide information on regional lung function heterogeneity. Fluorine 19 (F) MRI of inhaled perfluoropropane permits quantitative and spatially localized assessment of pulmonary ventilation properties without tracer gas hyperpolarization. Purpose To assess regional lung ventilation properties using F MRI of inhaled perfluoropropane in participants with asthma, participants with chronic obstructive pulmonary disease (COPD), and healthy participants, including quantitative evaluation of bronchodilator response in participants with respiratory disease.

View Article and Find Full Text PDF

Radiotherapy is used to treat over 50% of cancer patients. It is often used in combination with surgery, chemotherapy, and immunotherapy, for cancers of the breast, lung, oesophagus, and rectum. Ionising radiation predominantly exerts its anti-cancer effect through both direct DNA damage and indirectly via water radiolysis and the production of reactive oxygen species.

View Article and Find Full Text PDF

Polyethylene glycol (PEG)-coated microsized artificial oxygen carriers (AOCs) with a perfluorooctyl bromide (PFOB) core and poly(lactide--caprolactone) (PLC) shell were successfully fabricated using Shirasu porous glass (SPG) membrane emulsification. The PEG coating was achieved by adding the polylactide--polyethylene glycol--polylactide (PLA-PEG-PLA) block copolymer to the disperse phase during the SPG membrane emulsification process. During the DCM evaporation process, the three-layer structure of the PEG layer, PLC shell, and PFOB core of the AOCs spontaneously formed by phase separation.

View Article and Find Full Text PDF
Article Synopsis
  • Food packaging is essential for maintaining food quality and safety, but concerns over environmental and health issues related to conventional materials like PFAS and microplastics are pushing for design changes.
  • PFAS compounds have been commonly used for their water and grease repellency but are linked to serious health problems, while microplastics pose risks of contaminating food.
  • The review discusses the need for sustainable alternatives, like plant-based and recycled materials, and calls for further research to improve the scalability and cost-effectiveness of these eco-friendly packaging solutions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!