A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oleic acid vs saline solution lung lavage-induced acute lung injury: effects on lung morphology, pressure-volume relationships, and response to positive end-expiratory pressure. | LitMetric

Oleic acid vs saline solution lung lavage-induced acute lung injury: effects on lung morphology, pressure-volume relationships, and response to positive end-expiratory pressure.

Chest

Department of Anesthesiology and Critical Care Medicine, University Hospital of Mannheim, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Theodor-Kutzer Ufer, Germany.

Published: August 2006

Objective: To compare two lung injury models (oleic acid [OA] and saline solution washout [SW]) regarding lung morphology, regional inflation, and recruitment during static pressure-volume (PV) curves, and the effects of positive end-expiratory pressure (PEEP) below and above the lower inflection point (Pflex).

Methods: Fourteen adult pigs underwent OA or SW lung injury. Lung volumes were measured using CT. PV curves were obtained with simultaneous CT scanning at lung apex and base. Fractional inflation and recruitment were compared to data on PEEP above and below Pflex.

Results: Severity of lung injury was comparable. At zero PEEP, SW showed an increased amount of edema and poorly aerated lung volume, recruitment during inspiration, and a better oxygenation response with PEEP. Whole-lung PV curves were similar in both models, reflecting changes in alveolar inflation or deflation. On the inspiratory PV limb, recruitment and inflation were on the same line, while there was a substantial difference between deflation and derecruitment on the expiratory limb. PEEP-induced recruitment at lung apex and base was at or above the derecruitment line on the expiratory limb and showed no relationship to the whole-lung expiratory PV curve.

Conclusions: The following conclusions were made: (1) OA and SW models are comparable in mechanics but not in lung injury characteristics; (2) neither inspiratory nor expiratory whole-lung PV curves are useful to select PEEP in order to optimize recruitment; and (3) after recruitment, there is no difference in derecruitment between the models at high PEEP, while more collapse occurs at lower PEEP in the basal sections of SW lungs.

Download full-text PDF

Source
http://dx.doi.org/10.1378/chest.130.2.392DOI Listing

Publication Analysis

Top Keywords

lung injury
20
lung
12
oleic acid
8
saline solution
8
lung morphology
8
positive end-expiratory
8
end-expiratory pressure
8
inflation recruitment
8
lung apex
8
apex base
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!