A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Human embryonic stem cells have a unique epigenetic signature. | LitMetric

Human embryonic stem (hES) cells originate during an embryonic period of active epigenetic remodeling. DNA methylation patterns are likely to be critical for their self-renewal and pluripotence. We compared the DNA methylation status of 1536 CpG sites (from 371 genes) in 14 independently isolated hES cell lines with five other cell types: 24 cancer cell lines, four adult stem cell populations, four lymphoblastoid cell lines, five normal human tissues, and an embryonal carcinoma cell line. We found that the DNA methylation profile clearly distinguished the hES cells from all of the other cell types. A subset of 49 CpG sites from 40 genes contributed most to the differences among cell types. Another set of 25 sites from 23 genes distinguished hES cells from normal differentiated cells and can be used as biomarkers to monitor differentiation. Our results indicate that hES cells have a unique epigenetic signature that may contribute to their developmental potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557765PMC
http://dx.doi.org/10.1101/gr.5319906DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
cell lines
12
cell types
12
human embryonic
8
embryonic stem
8
stem cells
8
cells unique
8
unique epigenetic
8
epigenetic signature
8
cpg sites
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!