We have previously used cyclic nucleotide-gated (CNG) channels as sensors to measure cAMP signals in human embryonic kidney (HEK)-293 cells. We found that prostaglandin E(1) (PGE(1)) triggered transient increases in cAMP concentration near the plasma membrane, whereas total cAMP levels rose to a steady plateau over the same time course. In addition, we presented evidence that the decline in the near-membrane cAMP levels was due primarily to a PGE(1)-induced stimulation of phosphodiesterase (PDE) activity, and that the differences between near-membrane and total cAMP levels were largely due to diffusional barriers and differential PDE activity. Here, we examine the mechanisms regulating transient, near-membrane cAMP signals. We observed that 5-min stimulation of HEK-293 cells with prostaglandins triggered a two- to threefold increase in PDE4 activity. Extracellular application of H89 (a PKA inhibitor) inhibited stimulation of PDE4 activity. Similarly, when we used CNG channels to monitor cAMP signals we found that both extracellular and intracellular (via the whole-cell patch pipette) application of H89, or the highly selective PKA inhibitor, PKI, prevented the decline in prostaglandin-induced responses. Following pretreatment with rolipram (a PDE4 inhibitor), H89 had little or no effect on near-membrane or total cAMP levels. Furthermore, disrupting the subcellular localization of PKA with the A-kinase anchoring protein (AKAP) disruptor Ht31 prevented the decline in the transient response. Based on these data we developed a plausible kinetic model that describes prostaglandin-induced cAMP signals. This model has allowed us to quantitatively demonstrate the importance of PKA-mediated stimulation of PDE4 activity in shaping near-membrane cAMP signals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712347PMC
http://dx.doi.org/10.1152/ajpcell.00121.2006DOI Listing

Publication Analysis

Top Keywords

camp signals
24
camp levels
16
hek-293 cells
12
total camp
12
near-membrane camp
12
pde4 activity
12
camp
11
plasma membrane
8
cng channels
8
pde activity
8

Similar Publications

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).

View Article and Find Full Text PDF

The impact of signaling pathways on the desmosome ultrastructure in pemphigus.

Front Immunol

January 2025

Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilan-Universität (LMU) Munich, München, Germany.

Introduction: The autoantibody-driven disease pemphigus vulgaris (PV) impairs desmosome adhesion in the epidermis. In desmosomes, the pemphigus autoantigens desmoglein 1 (Dsg1) and Dsg3 link adjacent cells. Dsgs are clustered by plaque proteins and linked to the keratin cytoskeleton by desmoplakin (Dp).

View Article and Find Full Text PDF

PDE4 inhibitor rolipram represses hedgehog signaling via ubiquitin-mediated proteolysis of GLI transcription factors to regress breast cancer.

J Biol Chem

January 2025

Cell and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal, India, 741235. Electronic address:

Aberrant activation of the hedgehog (Hh) signaling pathway positively correlates with progression, invasion and metastasis of several cancers, including breast cancer. Although numerous inhibitors of the Hh signaling pathway are available, several oncogenic mutations of key components of the pathway, including Smoothened (Smo), have limited their capability to be developed as putative anti-cancer drugs. In this study, we have modulated the Hh signaling pathway in breast cancer using a specific FDA-approved phosphodiesterase 4 (PDE4) inhibitor rolipram.

View Article and Find Full Text PDF

Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!