Four alanine aminotransferases (AlaATs) are expressed in Medicago truncatula. In adult plants, two genes encoding mitochondrial isoforms m-AlaAT and alanine-glyoxylate aminotransferase (AGT), catalysing, respectively, reversible reactions of alanine/oxoglutarate<==>glutamate/pyruvate and alanine/glyoxylate<==>glycine/pyruvate, were expressed in roots, stems, and leaves. A gene encoding a cytosolic (c-AlaAT) isoform, catalysing the same reaction as m-AlaAT, was expressed specifically in leaves, while a gene encoding an isoform involved in branched chain amino acid metabolism was expressed in stems and roots. In young seedlings, only m-AlaAT and AGT were expressed in embryo axes. In hypoxic embryo axes, the amounts of transcript and putative protein of m-AlaAT (EC 2.6.1.2) increased while those of AGT (EC 2.6.1.44) decreased and in vivo enzyme activities changed as revealed by [(15)N]alanine and [(15)N]glutamate labelling. Under hypoxia, m-AlaAT catalysed only alanine synthesis while glutamate synthesis using alanine as amino donor was inhibited. As a result, alanine accumulated as the major amino acid in hypoxic seedlings instead of asparagine, in agreement with the involvement of the fermentative AlaAT pathway in hypoxia tolerance. Regulation of m-AlaAT at both the transcriptional and post-translational levels allowed for an increase in gene expression and orientation of the activity of the product of its transcription towards alanine synthesis under hypoxia. Labelling experiments showed that glycine synthesis occurred at the expense of either alanine or glutamate as amino donor, indicating that a glutamate-glyoxylate aminotransferase was operating together with AGT in Medicago truncatula seedlings. Both enzymes seemed to be inhibited by hypoxia, resulting in a very low amount of glycine in hypoxic seedlings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erl069 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
Proanthocyanidins (PAs) are the second most abundant plant phenolic natural products. The proton membrane H-ATPase (AHA) is required for PA transportation in vacuoles, but it remains unclear which AHA gene(s) encode tonoplast proton pump in M. truncatula.
View Article and Find Full Text PDFMol Plant
December 2024
College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:
Medicago, a member of the Leguminosae or Fabaceae family, encompasses the most significant forage crops globally, notably alfalfa (Medicago sativa L.). Its close diploid relative, Medicago truncatula, serves as an exemplary model plant for investigating leguminous growth and development, as well as its symbiosis with rhizobia.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States.
Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components-plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in .
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.
The phenylpropanoid biosynthesis pathway is involved in the response of plants to stress factors, including microorganisms. This paper presents how free-living strains of rhizobacteria KK5, KK7, KK4, and the symbiotic strain KK13 affect the expression of genes encoding phenylalanine ammonia-lyase (PAL), the activity of this enzyme, and the production of phenolic compounds in . Seedlings were inoculated with rhizobacteria, then at T0, T24, T72, and T168 after inoculation, the leaves and roots were analyzed for gene expression, enzyme activity, and the content of phenolic compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!