The potent vasodilator nitric oxide (NO), produced mainly by the endothelium, acts through a BK(Ca)-dependent mechanism to increase the frequency of calcium sparks (Ca(2+) sparks) in myocyte isolated from rat cerebral arteries. Our present aim has been to assess the role of endogenous and exogenous NO on the Ca(2+) sparks through ryanodine-sensitive channels in the sarcoplasmic reticulum of an intact artery. Calcium sparks, detected with fluo-4 and laser scanning confocal microscopy, were examined in isolated pressurized rat posterior cerebral arteries with (intact) and without endothelium (denuded). Addition of the NO donor, DEA-NONOate (N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine), did not change the amplitude and frequency of Ca(2+) sparks in the intact artery. However, inhibition of nitric oxide synthase with N-omega-nitro-L-arginine or removal of endothelium reduced Ca(2+) sparks frequency by about 50%. Under these conditions (i.e., absence of endogenous NO production), DEA-NONOate, increased Ca(2+) spark frequency 3- to 4-fold. These results suggest that endothelial NO modulates local Ca(2+) release events in the arterial smooth muscle and that this mechanism may contribute to the actions of nitrovasodilators.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2006.06.007DOI Listing

Publication Analysis

Top Keywords

ca2+ sparks
16
nitric oxide
12
calcium sparks
12
endogenous exogenous
8
rat cerebral
8
cerebral arteries
8
intact artery
8
sparks
7
ca2+
6
exogenous nitric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!