Fast computation of a gated dipole field.

Neural Netw

Department of Statistics and Econometrics, Faculty of Economics and Business Administration, Sofia University, 1113 Sofia, Bulgaria.

Published: December 2006

We address the need to develop efficient algorithms for numerical simulation of models, based in part or entirely on adaptive resonance theory. We introduce modifications that speed up the computation of the gated dipole field (GDF) in the Exact ART neural network. The speed increase of our solution amounts to at least an order of magnitude for fields with more than 100 gated dipoles. We adopt a 'divide and rule' approach towards the original GDF differential equations by grouping them into three categories, and modify each category in a separate way. We decouple the slow-dynamics part - the neurotransmitters from the rest of system, solve their equations analytically, and adapt the solution to the remaining fast-dynamics processes. Part of the node activations are integrated by an unsophisticated numerical procedure switched on and off according to rules. The remaining activations are calculated at equilibrium. We implement this logic in a Generalized Net (GN) - a tool for parallel processes simulation which enables a fresh look at developing efficient models. Our software implementation of generalized nets appears to add little computational overhead.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2006.05.031DOI Listing

Publication Analysis

Top Keywords

computation gated
8
gated dipole
8
dipole field
8
fast computation
4
field address
4
address develop
4
develop efficient
4
efficient algorithms
4
algorithms numerical
4
numerical simulation
4

Similar Publications

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels expressed in nervous and non-nervous system tissue important for memory, movement, and sensory processes. The pharmacological targeting of nAChRs, using small molecules or peptides, is a promising approach for the development of compounds for the treatment of various human diseases including inflammatory and neurogenerative disorders such as Alzheimer's disease. Using the acetylcholine binding protein (Ac-AChBP) as an established structural surrogate for human homopentameric α7 nAChRs, we describe an innovative protein painting mass spectrometry (MS) method that can be used to identify interaction sites for various ligands at the extracellular nAChR site.

View Article and Find Full Text PDF

This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials.

View Article and Find Full Text PDF

Background And Purpose: Polycystins (PKD2, PKD2L1) are voltage-gated and Ca -modulated members of the transient receptor potential (TRP) family of ion channels. Loss of PKD2L1 expression results in seizure-susceptibility and autism-like features in mice, whereas variants in PKD2 cause autosomal dominant polycystic kidney disease. Despite decades of evidence clearly linking their dysfunction to human disease and demonstrating their physiological importance in the brain and kidneys, the polycystin pharmacophore remains undefined.

View Article and Find Full Text PDF

Background: Epicardial fat tissue (EFT) is an active organ that can affect cardiac function and structure through endocrine, paracrine, and proinflammatory mechanisms. We hypothesized that greater thickness of EFT may harm the recovery of left ventricular (LV) systolic function in patients with severe aortic stenosis (AS) and reduced LV ejection fraction (EF ≤ 50 %) undergoing transcatheter aortic valve implantation (TAVI).

Methods: A sixty six patients with severe AS and 20 % ≥ LVEF ≤ 50 % who underwent TAVI were included.

View Article and Find Full Text PDF

Background: Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!