Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2006.06.004DOI Listing

Publication Analysis

Top Keywords

cytosine deaminase
4
deaminase producing
4
producing clostridium
4
clostridium detection
4
detection tumors
4
cytosine
1
producing
1
clostridium
1
detection
1
tumors
1

Similar Publications

Mitochondrial base editing: from principle, optimization to application.

Cell Biosci

January 2025

Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.

In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA.

View Article and Find Full Text PDF

Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in .

ACS Synth Biol

January 2025

Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.

The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.

View Article and Find Full Text PDF

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Untargeted Mutation Triggered by Ribonucleoside Embedded in DNA.

Int J Mol Sci

December 2024

Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.

DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the gene to preferentially detect the untargeted mutations.

View Article and Find Full Text PDF

Binding of transcription factors (TFs) at gene regulatory elements controls cellular epigenetic state and gene expression. Current genome-wide chromatin profiling approaches have inherently limited resolution, complicating assessment of TF occupancy and co-occupancy, especially at individual alleles. In this work, we introduce Accessible Chromatin by Cytosine Editing Site Sequencing with ATAC-seq (ACCESS-ATAC), which harnesses a double-stranded DNA cytosine deaminase (Ddd) enzyme to stencil TF binding locations within accessible chromatin regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!