MADS box genes are known to perform important functions in the development of various plant organs. Although the functions of many MADS box genes have previously been elucidated, the biological function of the type I MADS box genes remains poorly understood. In order to understand the function and regulation of the type I MADS box genes, we conducted molecular genetic analyses of AGL28, a member of the Malpha class of type I genes. AGL28 was expressed in vegetative tissues in a photoperiod-independent manner, but not within the reproductive apex. This indicates that AGL28 plays a role in the vegetative phase. Overexpression of AGL28 caused precocious flowering via the upregulation of the expression of FCA and LUMINIDEPENDENS (LD), both floral promoters within the autonomous pathway. However, the loss of AGL28 function did not result in any obvious flowering time phenotype, which suggests that AGL28 may perform a redundant function. Collectively, our data suggest that AGL28 is a positive regulator of known floral promoters within the autonomous pathway in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.07.121 | DOI Listing |
Plant Physiol
January 2025
Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China.
Carotenoids play indispensable roles in the ripening process of fleshy fruits. Capsanthin is a widely distributed and utilized natural red carotenoid. However, the regulatory genes involved in capsanthin biosynthesis remain insufficient.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.
View Article and Find Full Text PDFNat Plants
January 2025
Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.
View Article and Find Full Text PDFPlant Reprod
January 2025
Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic.
SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!