This study investigated the influence of climate on the carbon isotopic composition (sigma13C) and oxygen isotopic enrichment (delta18O) above the source water of different organic matter pools in European beech. In July and September 2002, sigma13C and delta18O were determined in phloem carbohydrates and in bulk foliage of adult beech trees along a transect from central Germany to southern France, where beech reaches its southernmost distributional limit. The data were related to meteorological and physiological parameters. The climate along the transect stretches from temperate [subcontinental (SC)] to submediterranean (SM). Both sigma13Cleaf and delta18Oleaf were representative of site-specific long-term environmental conditions. sigma13C of leaves collected in September was indicative of stomatal conductance, vapour pressure deficit (VPD) and radiation availability of the current growing season. delta18O was mainly correlated to mean growing season relative humidity (RH) and VPD. In contrast to the leaves, sigma13Cphloem varied considerably between July and September and was well correlated with canopy stomatal conductance (Gs) in a 2 d integral prior to phloem sampling. The relationship between sigma13C and delta18O in both leaves and phloem sap points, however, to a combined influence of stomatal conductance and photosynthetic capacity on the variation of sigma13C along the transect. delta18Ophloem could be described by applying a model that included 18O fractionation associated with water exchange between the leaf and the atmosphere and with the production of organic matter. Hence, isotope signatures can be used as effective tools to assess the water balance of beech, and thus, help predict the effects of climatic change on one of the ecologically and economically most important tree species in Central Europe.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2006.01520.xDOI Listing

Publication Analysis

Top Keywords

organic matter
12
stomatal conductance
12
carbon isotopic
8
isotopic composition
8
oxygen isotopic
8
isotopic enrichment
8
european beech
8
july september
8
sigma13c delta18o
8
growing season
8

Similar Publications

Fire-driven disruptions of global soil biochemical relationships.

Nat Commun

January 2025

Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS). Consejo Superior de Investigaciones Científicas (CSIC). Av. Reina Mercedes 10, E-41012, Sevilla, Spain.

Fires alter the stability of organic matter and promote soil erosion which threatens the fundamental coupling of soil biogeochemical cycles. Yet, how soil biogeochemistry and its environmental drivers respond to fire remain virtually unknown globally. Here, we integrate experimental observations and random forest model, and reveal significant divergence in the responses of soil biogeochemical attributes to fire, including soil carbon (C), nitrogen (N), and phosphorus (P) contents worldwide.

View Article and Find Full Text PDF

Versatile nitrate-respiring heterotrophs are previously concealed contributors to sulfur cycle.

Nat Commun

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.

Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.

View Article and Find Full Text PDF

Exploring the co-occurrence of microplastics, DOM and DBPs inside PVC pipes undergoing chlorination by correlation analysis and unsupervised learning.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore. Electronic address:

Drinking water distribution systems face a multifaceted emerging concern, including in situ microplastic (MP) generation, chemical leaching from plastic pipes, and the formation of disinfection by-products (DBPs). This study investigated the co-release of MPs and chemical leachates from polyvinyl chloride (PVC) pipes exposed to different chlorine concentrations on a lab scale, as well as the subsequent formation of DBP. Results highlighted significant evidence of PVC-derived dissolved organic matter (PVC-DOM) and microplastic (PVC-MP) leaching at higher chlorine concentrations.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant.

Water Sci Technol

January 2025

China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China.

Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!