Interpretation of the temperature dependence of equilibrium and rate constants.

J Mol Recognit

Department of Biochemistry, School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.

Published: January 2007

The objective of this review is to draw attention to potential pitfalls in attempts to glean mechanistic information from the magnitudes of standard enthalpies and entropies derived from the temperature dependence of equilibrium and rate constants for protein interactions. Problems arise because the minimalist model that suffices to describe the energy differences between initial and final states usually comprises a set of linked equilibria, each of which is characterized by its own energetics. For example, because the overall standard enthalpy is a composite of those individual values, a positive magnitude for DeltaH(o) can still arise despite all reactions within the subset being characterized by negative enthalpy changes: designation of the reaction as being entropy driven is thus equivocal. An experimenter must always bear in mind the fact that any mechanistic interpretation of the magnitudes of thermodynamic parameters refers to the reaction model rather than the experimental system. For the same reason there is little point in subjecting the temperature dependence of rate constants for protein interactions to transition-state analysis. If comparisons with reported values of standard enthalpy and entropy of activation are needed, they are readily calculated from the empirical Arrhenius parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.799DOI Listing

Publication Analysis

Top Keywords

temperature dependence
12
rate constants
12
dependence equilibrium
8
equilibrium rate
8
constants protein
8
protein interactions
8
standard enthalpy
8
interpretation temperature
4
constants objective
4
objective review
4

Similar Publications

Two artificial imidazole-derived nucleobases, HQIm (3H-imidazo[4,5-f]quinolin-5-ol) and CaIm (imidazole-4-carboxylate), were introduced into short DNA duplexes to systematically investigate their thermal stability upon metal ion coordination. Metal-mediated base pairs are formed with the 3d metal ions CoII, NiII and ZnII, as well as with the lanthanoid ions EuIII and SmIII, which induce a thermal stabilization of up to 8 °C upon binding. The latter are the first lanthanoid-mediated base pairs involving only four donor atoms that result in a significant duplex stabilization.

View Article and Find Full Text PDF

Methanesulfonic acid (MSA) and SO formation from the addition channel of atmospheric dimethyl sulfide oxidation.

Chem Commun (Camb)

December 2024

Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstraße. 15, 04318 Leipzig, Germany.

The formation of methanesulfonic acid (MSA) from the dimethyl sulfide addition channel primarily proceeds the reaction of methylsulfonyloxy radicals (CHSO) with H-atom donors, other than HO radicals. In competition with it, thermal decomposition of CHSO results in SO generation. The MSA/SO ratio is driven by the temperature dependence of CHSO decomposition.

View Article and Find Full Text PDF

Carbon dioxide hydrogenation to methanol is a key chemical reaction to store energy in chemical bonds, using carbon dioxide as an energy sink. Indium oxide is amongst the most promising candidates for replacing the copper and zinc oxide catalyst, which is industrially applied for syngas mixtures but less idoneous for educts with carbon dioxide due to instability reasons. The polymorph of indium oxide and the operating conditions remain to be optimized for optimal and stable performance.

View Article and Find Full Text PDF

Pressure-Dependent Electronic Superlattice in the Kagome Superconductor CsV_{3}Sb_{5}.

Phys Rev Lett

December 2024

Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstrasse 12, D-76131 Karlsruhe, Germany.

We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV_{3}Sb_{5}, exploring its response to variations in pressure and temperature. We discover that at low temperatures, the structural modulations of the electronic superlattice, commonly associated with charge-density-wave order, undergo a transformation around p∼0.7  GPa from the familiar 2×2 pattern to a long-range-ordered modulation at wave vector q=(0,3/8,1/2).

View Article and Find Full Text PDF

We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!