In the present study proteomes of liver samples were analyzed after administration of phenobarbital (PB) or 3-methylcholantrene (3-MC) to mice. Liver cell homogenates were subfractionated by differential ultracentrifugation into cytosol and microsomes, which were subjected to 2-DE to generate the proteomic maps of these fractions. 2-DE yielded 1100 and 800 protein spots for microsomes and cytosol, respectively. General trends of the fraction-specific alterations after 3-MC or PB treatment were evaluated using the Student's t-test and the principal component analysis (PCA). According to the PCA-derived data, the microsomal changes after 3-MC and PB treatment were quite similar. However, in the case of the cytosol data, the specificities of 3-MC- and PB-induced responses could be clearly distinguished from each other. Protein spots, whose expression levels differed from control, were identified by MALDI-TOF PMF. Proteomic studies such as those reported herein can be useful in identifying the molecular-based toxicity of lead drug candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pmic.200600342DOI Listing

Publication Analysis

Top Keywords

protein spots
8
3-mc treatment
8
proteomic profiles
4
profiles induced
4
induced hepatotoxicity
4
hepatotoxicity subcellular
4
subcellular level
4
level study
4
study proteomes
4
proteomes liver
4

Similar Publications

Background: Neurofibromatosis type 1 (NF-1), a rare autosomal dominant disorder, arises from gene mutations affecting neurofibromin, a Ras GTPase regulator. These mutations activate Ras proteins, triggering clinical symptoms such as skin spots, epilepsy, pain, and tumors. Although gastrointestinal stromal tumors are well-known in NF-1, diffuse intestinal ganglioneuromatosis remains an extremely rare complication.

View Article and Find Full Text PDF

Safety and Efficacy of Long-term Use of Infliximab in Severe Juvenile Dermatomyositis - 12 Years of Follow-up.

Acta Dermatovenerol Croat

November 2024

Prof. Marija Jelušić, MD, PhD, Department of Paediatrics, University of Zagreb, School of Medicine, Division of Clinical Immunology, Rheumatology and Allergology, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia;

Juvenile dermatomyositis with emphasized vasculopathy is rare, but the most severe form of the disease, with a poor prognosis with relapsing and chronic course or, in some cases, lethal outcome. We present a case of a 19-year-old Caucasian female, who developed severe acute juvenile dermatomyositis with emphasized multisystem vasculopathy, including retinal vasculopathy and maculopathy (cotton-wool spots, retinal hemorrhages, macular edema) at the age of 8. Due to no response to standard treatment protocols and rapid worsening of clinical symptoms and laboratory findings, a TNF inhibitor (infliximab) was introduced after the third week of treatment resulting in complete normalisation of muscle enzyme levels and complete resolution of eye changes within the next 2 weeks with a gradual general recovery.

View Article and Find Full Text PDF

In recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction.

View Article and Find Full Text PDF

From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown.

View Article and Find Full Text PDF

, Encoding a Leucine-Rich Repeat Containing Receptor-like Protein, Is a Major Aphid () Resistance Gene in Sorghum.

Int J Mol Sci

December 2024

USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.

Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!