A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther's tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-006-9031-0 | DOI Listing |
Euro Surveill
January 2025
The members of this group are listed under Acknowledgements.
Background infection (CDI) is a severe infection that needs to be monitored. This infection predominantly occurs in hospitalised patients after antimicrobial treatment, with high mortality in elderly patients.AimWe aimed at estimating the incidence of CDI in Italian hospitals over 4 months in 2022.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
December 2024
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
Rubinstein-Taybi syndrome (RTS) is a congenital disorder with characteristic clinical manifestations. In the vast majority of cases, it is caused by mutations of the gene encoding the transcriptional co-activator cAMP-response element binding protein (CBP)-binding protein (CREBBP). It has been thought to be a tumor predisposition syndrome as RTS patients have an increased risk of developing tumors including meningiomas.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
Background: The diversity-generating retroelements (DGRs) are a family of genetic elements that can produce mutations in target genes often related to ligand-binding functions, which possess a C-type lectin (CLec) domain that tolerates massive variations. They were first identified in viruses, then in bacteria and archaea from human-associated and environmental genomes. This DGR mechanism represents a fast adaptation of organisms to ever- changing environments.
View Article and Find Full Text PDFAtypical teratoid/rhabdoid tumors (AT/RTs) of the central nervous system (CNS) are rare and aggressive, typically occurring in early childhood or infancy, with adult cases being extremely rare. These tumors are associated with the inactivation of the integrase interactor 1 (INI1) gene. The prognosis is poor, worsening significantly if metastasis is detected at diagnosis.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Scottish Fish Immunology Research Centre, School of Biological Sciences, The University of Aberdeen, Aberdeen AB24 2TZ United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!