Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells.

Ann Biomed Eng

Department of Mechanical Engineering, W. M. Keck Border Biomedical Manufacturing and Engineering Laboratory, University of Texas at El Paso, El Paso, TX 79968-0521, USA.

Published: September 2006

Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-006-9156-yDOI Listing

Publication Analysis

Top Keywords

polyethylene glycol
8
fabricate complex
8
hydrogel thickness
8
stereolithography three-dimensional
4
three-dimensional bioactive
4
bioactive polyethylene
4
glycol constructs
4
constructs encapsulated
4
encapsulated cells
4
cells stereolithography
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!