Pathocycles: Ustilago maydis as a model to study the relationships between cell cycle and virulence in pathogenic fungi.

Mol Genet Genomics

Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco-UAM, 28049, Madrid, Spain.

Published: September 2006

Activation of virulence in pathogenic fungi often involves differentiation processes that need the reset of the cell cycle and induction of a new morphogenetic program. Therefore, the fungal capability to modify its cell cycle constitutes an important determinant in carrying out a successful infection. The dimorphic fungus Ustilago maydis is the causative agent of corn smut disease and has lately become a highly attractive model in addressing fundamental questions about development in pathogenic fungi. The different morphological and genetic changes of U. maydis cells during the pathogenic process advocate an accurate control of the cell cycle in these transitions. This is why this model pathogen deserves attention as a powerful tool in analyzing the relationships between cell cycle, morphogenesis, and pathogenicity. The aim of this review is to summarize recent advances in the unveiling of cell cycle regulation in U. maydis. We also discuss the connection between cell cycle and virulence and how cell cycle control is an important downstream target in the fungus-plant interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-006-0152-6DOI Listing

Publication Analysis

Top Keywords

cell cycle
32
pathogenic fungi
12
ustilago maydis
8
cell
8
relationships cell
8
cycle
8
cycle virulence
8
virulence pathogenic
8
pathocycles ustilago
4
maydis
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common and highly lethal cancers worldwide. RIO kinase 1 (RIOK1), a protein kinase/ATPase that plays a key role in regulating translation and ribosome assembly, is associated with a variety of malignant tumors. However, the role of RIOK1 in HCC remains largely unknown.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

Endocrine therapy with CDK4/6 inhibitors is standard for estrogen receptor-positive, HER2-negative metastatic breast cancer (ER+/HER2- MBC), yet clinical resistance develops. Previously, we demonstrated that low doses of palbociclib activate autophagy, reversing initial G1 cell cycle arrest, while high concentrations induce off-target senescence. The autophagy inhibitor hydroxychloroquine (HCQ) induced on-target senescence at lower palbociclib doses.

View Article and Find Full Text PDF

Cancer is still the leading cause of death worldwide. Despite advances in diagnosis, management with the rituximab, cyclophosphamide, doxorubicin hydrochloride, vincristine sulfate, and prednisone (R-CHOP) chemotherapy regimen, and careful clinical and radiologic evaluation, diffuse large B-cell lymphoma (DLBCL) still carries high recurrence in clinical practice. This case series aims to assess the potential of circulating free RNA as a biomarker for evaluating therapeutic responses in DLBCL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!