Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers.

J Cereb Blood Flow Metab

Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark.

Published: March 2007

Functional neuroimaging and normal brain function rely on the robust coupling between neural activity and cerebral blood flow (CBF), that is neurovascular coupling. We examined neurovascular coupling in rat sensory cortex in response to direct stimulation of transcallosal pathways, which allows examination of brain regions inaccessible to peripheral stimulation techniques. Using laser-Doppler flowmetry to record CBF and electrophysiologic recordings of local field potentials (LFPs), we show an exponential relation between CBF responses and summed LFP amplitudes. Hemodynamic responses were dependent on glutamate receptor activation. CNQX, an AMPA receptor blocker, strongly attenuated evoked CBF responses and LFP amplitudes at all stimulation frequencies. In comparison, N-methyl D-aspartate (NMDA) receptor blockade by MK801 attenuated CBF responses at high (>7 Hz) but not low (<7 Hz) stimulation frequencies, without affecting evoked LFP amplitudes. This shows the limitation of using LFP amplitudes as indicators of synaptic activity. 7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, and indomethacin, a nonspecific cyclooxygenase inhibitor, attenuated the hemodynamic responses by 50%+/-1% and 48%+/-1%, respectively, without affecting LFP amplitudes. The data suggest that preserved activity of both AMPA and NMDA receptors is necessary for the full CBF response evoked by stimulation of rodent interhemispheric connections. AMPA receptor activation gives rise to a measurable LFP, but NMDA receptor activation does not. The lack of a measurable LFP from neural processes that contribute importantly to CBF may explain some of the difficulties in transforming extracellular current or voltage measurements to a hemodynamic response.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jcbfm.9600372DOI Listing

Publication Analysis

Top Keywords

neurovascular coupling
12
cbf responses
12
coupling rat
8
rat sensory
8
sensory cortex
8
lfp amplitudes
8
cbf
5
nonlinear neurovascular
4
coupling
4
cortex activation
4

Similar Publications

Diabetic wounds present multiple functional impairments, including neurovascular dysregulation, oxidative imbalance, and immune dysfunction, making wound healing particularly challenging, while traditional therapeutical strategies fail to address these complex issues effectively. Herein, we propose a strategy utilizing dual-layer microneedles to deliver therapeutic gases by modulating neurovascular coupling and immune functions for diabetic wound treatment. The microneedle can respond to reactive oxygen species (ROS) in the diabetic microenvironment and subsequently generate oxygen (O) and nitric oxide (NO).

View Article and Find Full Text PDF

Diabetic Retinopathy (DR), a leading complication of diabetes mellitus, has long been considered as a microvascular disease of the retina. However, recent evidence suggests that DR is a neurovascular disease, characterized by the degeneration of retinal neural tissue and microvascular abnormalities encompassing ischemia, neovascularization, and blood-retinal barrier breakdown, ultimately leading to blindness. The intricate relationship between the retina and vascular cells constitutes a neurovascular unit, a multi-cellular framework of retinal neurons, glial cells, immune cells, and vascular cells, which facilitates neurovascular coupling, linking neuronal activity to blood flow.

View Article and Find Full Text PDF

Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

The pathobiology of neurovascular aging.

Neuron

January 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA. Electronic address:

As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!