The gamma subunit of the F1 portion of the chloroplast ATP synthase contains a critically placed dithiol that provides a redox switch converting the enzyme from a latent to an active ATPase. The switch prevents depletion of intracellular ATP pools in the dark when photophosphorylation is inactive. The dithiol is located in a special regulatory segment of about 40 amino acids that is absent from the gamma subunits of the eubacterial and mitochondrial enzymes. Site-directed mutagenesis was used to probe the relationship between the structure of the gamma regulatory segment and its function in ATPase regulation via its interaction with the inhibitory epsilon subunit. Mutations were designed using a homology model of the chloroplast gamma subunit based on the analogous structures of the bacterial and mitochondrial homologues. The mutations included (a) substituting both of the disulfide-forming cysteines (Cys199 and Cys205) for alanines, (b) deleting nine residues containing the dithiol, (c) deleting the region distal to the dithiol (residues 224-240), and (d) deleting the entire segment between residues 196 and 241 with the exception of a small spacer element, and (e) deleting pieces from a small loop segment predicted by the model to interact with the dithiol domain. Deletions within the dithiol domain and within parts of the loop segment resulted in loss of redox control of the ATPase activity of the F1 enzyme. Deleting the distal segment, the whole regulatory domain, or parts of the loop segment had the additional effect of reducing the maximum extent of inhibition obtained upon adding the epsilon subunit but did not abolish epsilon binding. The results suggest a mechanism by which the gamma and epsilon subunits interact with each other to induce the latent state of the enzyme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M603315200 | DOI Listing |
Sci Rep
January 2025
Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.
G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.
View Article and Find Full Text PDFDrug Res (Stuttg)
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
WEE1 is a key tyrosine kinase involved in the cell cycle regulation with potent anticancer effects in various cancer types including colorectal cancer. Recent studies have focused on the potential of combinational inhibition of Ataxia Telangiectasia and Rad-3-related protein (ATR) and WEE1 in increasing apoptosis in cancer cells. Therefore, this study investigates the effects of inhibiting WEE1, by employing AZD1775, on colorectal cancer cells' susceptibility to VE-822-induced DNA damage and apoptosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFJ Integr Bioinform
January 2025
Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia.
The emergence of new variants of SARS-CoV-2, including Alpha, Beta, Gamma, Delta, Omicron variants, and XBB sub-variants, contributes to the number of coronavirus cases worldwide. SARS-CoV-2 is a positive RNA virus with a genome of 29.9 kb that encodes four structural proteins: spike glycoprotein (S), envelope glycoprotein (E), membrane glycoprotein (M), and nucleocapsid glycoprotein (N).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!