The main purpose of this study was to determine whether enhancement of repair capacity would attenuate mitochondrial DNA oxidative damage and result in greater cell survival under stressful conditions. The repair of oxidative damage is initiated by DNA glycosylases, which catalyze the excision of oxidized bases, such as 8-hydroxydeoxyguanosine (8-oxodG). Drosophila DNA glycosylases, dOgg1 and RpS3, were ectopically expressed within the mitochondrial matrix in Drosophila S2 cells, causing a severalfold decrease in the levels of 8-oxodG in mitochondrial DNA. Unexpectedly, cells did not show increased resistance to oxidative stress, but instead became more susceptible to treatment with hydrogen peroxide or paraquat. Even in the absence of oxidative challenge, cells expressing RpS3 or dOgg1 in mitochondria exhibited increased apoptosis relative to controls, as determined by flow-cytometric analysis of Annexin V and DNA degradation measured by the Comet assay. Another notable finding was that ectopic expression of either dOgg1 or RpS3 in mitochondria increased cell survival after exposure to the nitric oxide donor SNAP. These results suggest that ectopic expression of one of the constituents of the DNA repair system in mitochondria may cause a perturbation in the base excision repair pathway and lower, rather than enhance, survivability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835572 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2006.05.021 | DOI Listing |
Iran J Basic Med Sci
January 2025
School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China.
Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).
Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.
Theor Appl Genet
January 2025
College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.
View Article and Find Full Text PDFFront Plant Sci
January 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China.
One significant environmental element influencing the growth and yield of rice ( L.) is high temperature. Nevertheless, the mechanism by which rice responds to high temperature is not fully understood.
View Article and Find Full Text PDFJ Pathol
January 2025
Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
Ferroptosis has been characterised by disruption of the cell membrane through iron-related lipid peroxidation. However, regulation of iron homeostasis in lung cancer cells that are resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains unclear. Transcriptome analysis identified a significant downregulation of apoptosis-associated tyrosine kinase (AATK) mRNA expression in gefitinib-resistant PC9 (PC9-GR) cells, which were found to be more susceptible to ferroptosis inducers.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!