Cell printing has been popularized over the past few years as a revolutionary advance in tissue engineering has potentially enabled heterogeneous 3-D scaffolds to be built cell-by-cell. This review article summarizes the state-of-the-art cell printing techniques that utilize fluid jetting phenomena to deposit 2- and 3-D patterns of living eukaryotic cells. There are four distinct categories of jetbased approaches to printing cells. Laser guidance direct write (LG DW) was the first reported technique to print viable cells by forming patterns of embryonic-chick spinal-cord cells on a glass slide (1999). Shortly after this, modified laser-induced forward transfer techniques (LIFT) and modified ink jet printers were also used to print viable cells, followed by the most recent demonstration using an electrohydrodynamic jetting (EHDJ) method. The low cost of some of these printing technologies has spurred debate as to whether they could be used on a large scale to manufacture tissue and possibly even whole organs. This review summarizes the published results of these cell printers (cell viability, retained genotype and phenotype), and also includes a physical description of the various jetting processes with a discussion of the stresses and forces that may be encountered by cells during printing. We conclude the review by comparing and contrasting the different jet-based techniques, while providing a map for future experiments that could lead to significant advances in the field of tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/biot.200600058 | DOI Listing |
Adv Mater
January 2025
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.
The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan.
Mandibular gingival squamous cell carcinoma (SCC) is the second most common oral cancer after tongue cancer. As these carcinomas often invade the mandible early, accurately defining the resection extent is important. This report highlights the use of preoperative virtual surgery data, computer-aided design and manufacturing (CAD/CAM) technology, surgical guidance, and extended reality (XR) support in achieving highly accurate marginal mandibulectomy without recurrence or metastasis.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea.
Glaucoma treatment involves reducing the intraocular pressure (IOP), which can damage the optic nerve, to a normal range. Aqueous drainage devices may be used for treatment, and a variety of devices have been proposed. However, they have a non-variable and uniform inner diameter, which makes it difficult to accommodate the IOP fluctuations that occur after glaucoma surgery.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Metallurgical and Materials Engineering, Karadeniz Technical University, 61080 Trabzon, Turkey.
The introduction of 3D printing technology has broadened manufacturing possibilities, allowing the production of complex cellular geometries, including auxetic and curved plane structures, beyond the standard honeycomb patterns in sandwich composite materials. In this study, the effects of cell design parameters, such as cell geometry (honeycomb and auxetic) and cell size (cell thickness and width), are examined on acrylonitrile butadiene styrene (ABS) core materials produced using fusion deposition modeling (FDM). They are produced as a result of the epoxy bonding of carbon epoxy prepreg composite materials to the surfaces of core materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!